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Executive Summary

This deliverable reviews the systems that participated during the first BIOASQ challenge and performs
an analysis of the results. More specifically, in the deliverable a short description of each system is given
providing also the key technologies that have been used. The objective of this deliverable is to identify
the most promising approaches and to point out the progress made with the state-of-the-art.

The challenge comprised two tasks: a) large-scale online biomedical indexing (Task 1a) and b)
introductory biomedical semantic QA (Task 1b). Both tasks run in three consecutive batches.

In Task 1a 11 teams participated using 46 registered systems. The systems were evaluated in several
performance measures and compared against two baseline systems. Most of them were able to cope
with the large scale of the problem while two of them achieved to systematically outperform the state-
of-the-art baseline (Medical Text Indexer). A variety of methods have been used like machine learning
approaches or search-based ones and hierarchical or flat ones.

In Task 1b 4 teams participated in total in the two phases. In phase A 4 systems were submitted
while in phase B the teams submitted 7 systems. In phase A the systems have not achieved better results
than the baselines while in phase B the were able to obtain a superior performance.
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CHAPTER 1

Introduction

This deliverable reviews the systems that participated during the first BIOASQ challenge and performs
an analysis of the results. More specifically, in the deliverable a short description of each system is given
providing also the key technologies that have been used. The objective of this deliverable is to identify
the most promising approaches and to point out the progress made with the state-of-the-art.

The reminder of the deliverable is as follows:

• Chapter 1 describes briefly the BIOASQ challenge providing also details of the evaluation pro-
cedure along with the corresponding time plans. Additionally, for each of the two tasks of the
challenge, the total numbers of the participating systems and teams are reported.

• Chapter 2 reviews, for the two tasks, the systems that participated in the challenge. This review is
based on the available descriptions provided by the participants. For each system, we present the
key points of the proposed methods.

• Chapter 3 presents the results of the evaluation procedure available from the BIOASQ evaluation
platform1.

• Chapter 4 presents the prizes awarded to the winners of each task.

• Chapter 5 concludes this deliverable by commenting on the advancement of the state-of-the-art in
the biomedical semantic indexing and question answering domain. Also, it discusses the potential
impact of the technologies on specialized search engines.

1.1 Challenge Description

The goal of the BIOASQ challenge is to push the state-of-the-art technologies in the domain of biomed-
ical semantic indexing and question answering (Tsatsaronis et al., 2012). The challenge comprises two
tasks: a) a large-scale semantic indexing task (Task 1a) and b) a question answering task (Task 1b).

1http://bioasq.lip6.fr
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Large-scale online biomedical semantic indexing. In Task 1a the goal is to classify documents from
the PubMed2 digital library, which indexes biomedical articles form MEDLINE, onto concepts of the
MeSH3 hierarchy. On a daily basis, new articles which are not yet annotated are stored in the database
of PubMed. These articles are used as test sets for the evaluation of the participating systems. As soon
as the annotations are available from the PubMed curators, the performance of each system is calculated
using standard evaluation measures as well as new ones partly developed during the project.

In order to provide an on-line and large-scale scenario, the task were divided in three independent
batches, where in each batch 6 test sets of biomedical articles were released consecutively. Each of these
test sets were released on a weekly basis and the participants had 23 hours to provide their answers.
Figure 1.1 presents the time plan of Task 1a.
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Figure 1.1: The time plan of Task 1a.

The participants were evaluated using several flat and hierarchical measures. The winners of each
batch were decided based on their performance in the Micro F-measure (MiF) from the family of flat
measures (Tsoumakas et al., 2010), and the Lowest Common Ancestor F-measure (LCA-F) from the
family of hierarchical measures (Kosmopoulos et al., 2013). For completeness, several other flat and
hierarchical measures were reported (Balikas et al., 2013).

Introductory biomedical semantic QA. Task 1b comprised two phases and the goal was to provide a
large-scale question answering challenge where the systems should be able to cope with all the stages of
a question answering task (as the retrieval of relevant concepts and articles) and provide natural language
answers.

During phase A of the task, BIOASQ released questions in English from the benchmark datasets
and the participants had to respond with concepts (from specific terminologies and ontologies), snippets
extracted from the retrieved articles and RDF triples (from specific ontologies).

In the second phase of the task, the released questions contained also the correct answers for the
elements (concepts, articles, snippets and RDF triples) of the first phase. The participants had to answer
with exact answers (this varies according to the type of the question) and ideal answers which are
paragraph-sized summaries in natural language.

The task has been split in three independent batches, as in Task 1a. The two phases for each batch
were run with a time gap of 24 hours and for each of them the participants had 24 hours to submit their
answers.

For evaluating the performance of the systems in phase A, well established information retrieval
measures have been used as the mean precision, mean recall, mean F-measure, mean average precision

2http://www.ncbi.nlm.nih.gov/pubmed
3http://www.ncbi.nlm.nih.gov/mesh
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(MAP) and geometric MAP (GMAP). The winners were selected based on MAP. The phase B of the task
has been based on a manual evaluation of the ideal answers provided by the systems, by the BIOASQ
experts. For reasons of completeness, automatic evaluation measures have been also reported using
ROUGE (Lin, 2004).
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Figure 1.2: The time plan of Task 1b. The two phases for each batch run in consecutive dates.
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CHAPTER 2

Technology Overview

2.1 Task 1a

2.1.1 Background and Related Work
Background. Task 1a deals with the semantic indexing of biomedical documents with concepts from
the MeSH hierarchy. Typically the problem is tackled like a classification one where one should build
classification models that assign classes from the designated hierarchy to documents. Under this setting,
the training set can be represented by S = {(x(i), y(i))}mi=1. In the context of text classification, x(i) ∈ X
denotes the vector representation of the i-th document in the input space X ⊆ Rn. Assuming that there
are K classes denoted by the set Y = {y1 . . . yK}, the label y(i) ∈ Y represents the class associated with
the instance x(i). In text classification the features (or terms) of the vector representation are the distinct
words that occur in the training data. Each element xk of the vector representation can be either a binary
value (0/1), expressing the absence or the presence of the specific word in the document, or a real value
calculated by statistical techniques. A simple approach (term frequency) is to calculate the number of
occurrences of each word in the document. The most popular scheme is the tf ∗ idf (term-frequency
inverse document frequency) where the tf is the term frequency of a specific term t and idf = ln m

dft
is the logarithm of the number of the documents in the collection divided by the number of documents
that contain the term. The idf is a measure of the importance of a specific term in the collection. For
example, very common words will have a low idf value. A standard chain for producing the vectors is
the following: tokenization, stemming/lemmatization and stop-word removal.

Related work. There have been proposed several approaches for large-scale classification which either
leverage the hierarchy information (a simple tree hierarchy is presented in Figure 2.1) by taking into
account the parent-child relations among the classes (hierarchical methods) or they totally ignore this
information (flat measures). Hierarchical methods suffer from the fact that the errors made at an upper
level of the hierarchy are unrecoverable. On the other hand, flat methods are very slow in terms of
training and testing compared to hierarchical methods (Babbar et al., 2013).

Some of the earlier works on exploiting hierarchy among target classes for the purpose of text classi-
fication has been studied in (Koller and Sahami, 1997). Parameter smoothing for Naive Bayes classifier

D5.1: Technology Overview Report 1
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Root

Figure 2.1: A simple tree hierarchy.

along the root to leaf path was explored by (McCallum et al., 1998). Maximum margin based approaches
have been proposed in (Cai and Hofmann, 2004; Dekel et al., 2004), where the degree of penalization
in mis-classification depends on the distance between the true and predicted class in the hierarchy tree.
However, these approaches were applied to the datasets in which the number of categories were lim-
ited to a few hundreds. (Liu et al., 2005) applied hierarchical SVM to the scale with over 100,000
categories in Yahoo! directory. More recently, other techniques for large scale hierarchical text clas-
sification have been proposed. Prevention of error propagation by applying Refined Experts trained on
a validation was proposed in (Bennett and Nguyen, 2009). In this approach, bottom-up information
propagation is performed by utilizing the output of the lower level classifiers in order to improve the
classification of top-level classifiers. Deep Classification (Xue et al., 2008) proposes hierarchy pruning
to first identify a much smaller subset of target classes. Prediction of a test instance is then performed
by re-training Naive Bayes classifier on the subset of target classes identified from the first step. More
recently, Bayesian modelling of large scale hierarchical classification has been proposed in (Gopal et al.,
2012) in which hierarchical dependencies between the parent-child nodes are modelled by centering the
prior of the child node at the parameter values of its parent.

Hierarchy simplification by flattening entire layer in the hierarchy has been studied from an empirical
view-point in (Wang and Lu, 2010; Malik, 2009). These strategies for taxonomy adaptation by flattening
do not provide any theoretical justification for applying this procedure. Moreover, they offer no clear
guidelines regarding which layer in the hierarchy one should flatten. Most of the existing approaches
to large scale classification have focussed on the two extremes of flat or hierarchical classification. An
approach based on taxonomy embedding has been proposed in (Weinberger and Chapelle, 2009), but
this has been restricted to only small scale problems, wherein the target classes are of the order of few
hundreds.

Apart from accuracy, other important factors while evaluating the classification strategies for large
scale classification are training and prediction speed. The comparison of training time complexity for flat
and hierarchical classification in the context of large taxonomies has been studied in (Liu et al., 2005).
Learning the hierarchy tree from large number of classes in order to make faster prediction has also
attained significance as explored in the recent works such as (Bengio et al., 2010; Beygelzimer et al.,
2009; Gao and Koller, 2011). The aim in these approaches is to achieve better prediction speed while
maintaining the same classification accuracy as flat classification. On the other end of the specturm are
flat classification techniques such as employed in (Perronnin et al., 2012) which ignore the hierarchy
structure. These strategies are likely to perform well for balanced hierarchies with sufficient training
instances per target class and not so well in large scale taxonomies which suffer from the problem of
rare classes.

D5.1: Technology Overview Report 1
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2.1.2 Systems Overview
The participating systems in the semantic indexing task of the BIOASQ challenge adopted a variety of
approaches, like hierarchical and flat methods or search-based systems that rely on information retrieval
techniques. In the rest of this section we describe the proposed systems by stressing on their key points.

In (Ribadas et al., 2013) the authors proposed two hierarchical approaches. The first approach,
referred to as Hierarchical Annotation and Categorization Engine (HACE), follows a top-down hier-
archical classification scheme (Silla and Freitas, 2011) where, for each node of the hierarchy, a binary
classifier is trained. For constructing the positive training examples for each node, the authors employ
a random method that selects a fixed amount of examples from the descendants of the current node and
a method that is based on k-means to choose the k closest examples to the centroid of the node. In
both approaches the selected examples are fixed in order to create manageable datasets especially in the
upper levels of the hierarchy. The second system (Rebayct) that has participated in the challenge was
based on a Bayesian network which models the hierarchical relations as well as the training data (that
is the terms in the abstracts ant titles). A major drawback of this system is that it cannot scale well
to large classification problems with thousands of classes and millions of documents. For this reason,
the authors reduced drastically the training data keeping only 10% of the data split in 5 disjoint parts
in order to train five different models. During the testing phase, the models are aggregated through a
simple majority voting.

In (Tsoumakas et al., 2013) (AUTH) a flat classification approach has been employed which trains
a binary SVM for each label in the training data (Tang et al., 2009). In order to reduce the complexity
of the problem the authors kept only the training data that belong to the journals (1806 in total) from
which the test sets were sampled during the testing phase of the challenge. The journal filtering reduced
the training data to approximately 4 millions of documents from the initial 11 millions documents. The
features that were used to represent each article were unigrams and bigrams (word as unit) extracted
from the title and abstract of each article. The systems that were introduced in the challenge use a
meta-model (called MetaLabeler (Tang et al., 2009)) for predicting the number of labels (N ) of a test
instance. During the prediction all the SVM classifiers are queried and the labels are sorted according to
the corresponding confidence value. Finally, the system predicts the N top labels. While the proposed
approach is relative simple, it requires processing power for both the training and the testing procedure.
Furthermore, it has large storage requirements (as reported from the authors, the size of the models for
one of the systems was 406Gb).

In (Zhu et al., 2013), the authors follow two different approaches: a) one that relies in the results
provided by the MetMap tool described in Aronson and Lang (2010) and b) one that is based on the
search engine Indri1. In the MetaMap based approach, for each test instance, the MetaMap system is
queried for both the title and the abstract of the article. The returned results contain concepts and their
corresponding confidence scores. The system calculates a final score, weighting differently the concepts
that are obtained for the title and the abstract and filtering the ones exceeding a predefined threshold
for the confidence score. Finally, the system proposes the m top-ranked concepts, where m is a free
parameter. In the search based approach the authors index the training data using the engine Indri. For
each test article a query q is formed and a score is calculated for each document d in the index. The
concepts of the m top-ranked documents are assigned to the test article.

In the Wishart system (Liu, 2013) a typical flat classification approach as well as a k-NN are used.
In the flat approach, a binary SVM is trained for each label present in the training data using as features
unigrams, bigrams and trigrams extracted from the abstracts of the training data. In the k-NN based
approach, for each test article, the k-NN method is invoked in order to retrieve documents from a local

1http://www.lemurproject.org/indri.php
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index. Additionally, the NCBI Entrez system is queried in order to retrieve extra documents along with
their labels. All the abstracts are ordered (first N - empirically set to 100) according to their distance
and the top M (empirically set to 10) labels are retained. For the final prediction, the two systems
are combined by keeping the common predicted labels; the other labels are ordered according to their
confidence scores. The system predicts 10-15 labels for each test article.

A learning to rank method has been used in the NCBI team (Mao and Lu, 2013). More specifically,
the systems follow a three stage approach: i) first the k-nearest neighbours of the test article are retrieved
from the MEDLINE database, ii) next the labels are ordered using a learning to rank algorithm and iii)
finally a cut-off method prunes the ordered list. It is interesting to note that in the definition of the
features for the learning to rank problem, the authors use the results of the MTIFL baseline system (see
next paragraph). More specifically, a binary feature indicates whether a specific label is observed in the
results of MTIFL.

Table 2.1 summarizes the main technologies that were employed by the participating systems; it
also indicates whether a hierarchical or a flat approach has been followed. Additionally, the last column
shows what features were used from each team for the representation of the documents. It is clear that
the majority of the participants followed flat methods to tackle the problem using a variety of technolo-
gies from the machine learning and information retrieval areas. Not surprisingly, the machine learning
approaches used SVM classifiers which are powerful schemes in text classification tasks (Tsoumakas
et al., 2013; Liu, 2013). In the contrary, these flat systems have large processing and storage require-
ments in both training and inference stages. In order to reduce the complexity of the problem in (Ribadas
et al., 2013), the authors leveraged the hierarchy information by employing the classifiers in a top-down
manner. In (Zhu et al., 2013) and (Mao and Lu, 2013) the authors follow a two stage approach, thus
reducing the complexity, where they first retrieve relevant articles using search engines or following a
k-nearest neighbors approach on local indexes of the training data.

Reference Approach Technologies Features

Tsoumakas et al. (2013) flat SVMs, MetaLabeler (Tang et al.,
2009)

unigrams, bigrams

Ribadas et al. (2013) hierarchical SVMs, Bayes networks unigrams, bigrams
Zhu et al. (2013) flat MetaMap (Aronson and Lang,

2010), information retrieval,
search engines

unigrams

Liu (2013) flat k-NN, SVMs unigrams, bigrams, trigrams
Mao and Lu (2013) flat k-NN, learning-to-rank unigrams

Table 2.1: Technologies used in Task 1a from the participating systems along with the feature represen-
tation of the documents.

Baselines. During the first challenge, two systems were used as baseline systems. The first one, called
BioASQ Baseline, follows an unsupervised approach to tackle the problem; it is thus expected that the
systems developed by the participants will outperform it. More specifically, the baseline implements At-
tribute Alignment Annotator (Doms, 2010). It is an unsupervised method, based on the Smith-Waterman
sequence alignment algorithm (Smith and Waterman, 1981) and can recognizes terms from MeSH and
Gene Ontology in a given text passage. The annotator first pre-processes both the ontology terms and
the text by tokenizing them, removing the stop words and stemming the remaining terms (an in-house
stop word list that is specific to the domain is used). Then the term stems are mapped onto the text stems

D5.1: Technology Overview Report 1
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using the local sequence alignment algorithms (Smith and Waterman, 1981). Insertions, deletions and
gaps are penalized. The information value of terms calculated over the whole ontology is also taken into
account during the alignment process, in a similar manner as the inverse document frequency score is
used for the tf-idf weighting of terms.

The second baseline is a state-of-the-art method called Medical Text Indexer (Mork et al., 2013)
developed by the National Library of Medicine2. It is a classification system for articles of MEDLINE.
MTI is used by curators in their annotation process. It is worth to note also that MTI is used in a few
journals to fully automate the annotation process. So, it is expected to be a strong baseline.

2.2 Task 1b

In the second task of the BioASQ challenge a total of three teams participated in both phases with 11
systems. Only two descriptions were available from these systems (Liu, 2013; Zhu et al., 2013).

For phase A of Task 1b the Wishart system (Liu, 2013) makes use of query processing and docu-
ment ranking techniques. More specifically, each test question in natural language form is converted
by extracting the noun phrases and reference them using a thesaurus of biomedical entities. Then the
question is expanded by adding synonyms and relevant biomedical entities using the PolySearch tool3.
The entities found by PolySearch are used to rank the retrieved set of concepts, articles, triples and
snippets. In phase B of the task a similar approach to phase A is used in order to augment the set of
given concepts. Extracted sentences from the retrieved documents are ranked according to the cosine
similarity with respect to the augmented concepts. The top-ranked sentences are concatenated in order
to provide an ideal answer.

The MCTeam system participated (Zhu et al., 2013) only in phase A. In order to form an appropriate
query the system first uses the test question to query MetaMap, which responds with concept-related
words. These words were used to form a query. In case where no concepts were returned by MetaMap,
the final query formed by removing the stopwords from the test question. This query was used to retrieve
the appropriate information from the BIOASQ web services and also from a local index of PubMed full-
text articles4. The two lists of the retrieved results were then merged and formed the final results.

Baselines. Two baselines were used in phase A, respectively returning the list of the top-50 and the
top-100 entities that may be retrieved using the keywords of the input question as a query to the BIOASQ
services. As a result, two lists for each of the main entities (concepts, documents, snippets, triples) are
produced, of a maximum length of 50 and 100 items respectively.

For the creation of a baseline approach in Phase B, three approaches were created that address re-
spectively the answering of factoid and lists questions, summary questions, and yes/no questions (Weis-
senborn et al., 2013). The three approaches were combined into one system, and constitute the BIOASQ
baseline for this phase of Task 1B. The baseline approach for the list/factoid questions utilizes and en-
sembles a set of scoring schemes that attempt to prioritize the concepts that answer the question by
assuming that the type of the answer aligns with the lexical answer type (type coercion). The baseline
approach for the summary questions uses a multi-document summarization method using Integer Linear
Programming and Support Vector Regression.

2http://ii.nlm.nih.gov/MTI/index.shtml
3http://wishart.biology.ualberta.ca/polysearch/
4The Indri search engine has been used for indexing the documents.
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CHAPTER 3

Setup and Results

3.1 Task 1a

3.1.1 Data and Setup
During the evaluation phase of Task1a, the participants were submitting each week their results in the
online evaluation platform of the challenge1. The evaluation period was divided in three batches con-
taining 6 test sets each. 11 teams participated in the task with a total of 40 systems. For measuring the
classification performance of the systems, several evaluation measures were used (Balikas et al., 2013).
The micro F-measure (MiF) and the Lowest Common Ancestor F-measure (LCA-F) were used to assess
the systems and choose the winners for each batch (Kosmopoulos et al., 2013).

Table 3.1 presents the statistics of the training data that were provided to the participants while Table
3.2 presents the number of articles in each test set of each batch of the challenge along with the number
of articles that had been annotated sofar. The articles were provided to the participants in their raw
format (plain text) as well as in a pre-processed one (in a vectorized format) under the Apache Lucene
framework2. Lucene is an open-source library3 dedicated to text search. Figure 3.1 presents an example
of two articles extracted from the BIOASQ benchmark training data.

Articles 10,876,004
Total labels 26,563
Labels per article 12.55
Size in GB 22

Table 3.1: Properties of the training data for Task1a: total number of articles, labels present in the data,
average labels per article and size of the data in GB.

1http://bioasq.lip6.fr
2http://lucene.apache.org/
3Under the Apache Licence: http://www.apache.org/licenses/LICENSE-2.0.html
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1 {
2 "abstractText":"From the above it is seen that the [...]
3 scientific guidance of which lies wholly
4 in the hands of scientists.",
5 "journal":"Science (New York, N.Y.)",
6 "meshMajor":["Biomedical Research"],
7 "pmid":"17772322",
8 "title":"New Horizons in Medical Research.",
9 "year":"1946"

10 },
11 {
12 "abstractText":"1. T antigens of group A hemolytic
13 streptococci have been [...] T antigen in the intact
14 streptococcus from which it was derived.",
15 "journal":"The Journal of experimental medicine",
16 "meshMajor":["Antibodies","Antigens",
17 "Immunity","Streptococcal Infections","Streptococcus"],
18 "pmid":"19871581",
19 "title":"THE PROPERTIES OF T ANTIGENS EXTRACTED
20 FROM GROUP A HEMOLYTIC STREPTOCOCCI.",
21 "year":"1946"
22 }

Figure 3.1: An extract from the training data of Task1a.

3.1.2 Results
Table 3.3 presents the correspondence of the systems for which a description was available and the
submitted systems in Task 1a. The systems MTIFL, MTI and bioasq baseline were the baseline systems
used throughout the challenge. MTIFL and MTI refer to the NLM Medical Text Indexer system (Mork
et al., 2013). Systems that participated in less than 4 test sets in each batch are not reported in the
results4.

According to (Demsar, 2006) the appropriate way to compare multiple classification systems over
multiple datasets is based on their average rank across all the datasets. On each dataset the system with
the best performance gets rank 1.0, the second best rank 2.0 and so on. In case that two or more systems
tie, they all receive the average rank.

Tables 3.4 presents the average rank (according to MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the average ranks are calculated for the 4 best results of
each system in the batch according to the rules of the challenge5. The best ranked system is highlighted
with bold typeface. We can observe that during the first batch the MTIFL baseline achieved the best
performance in terms of MiF measure, exhibiting a state-of-the-art performance which is also evident in
the other two batches. During the first batch, RMAIP and system3 have the best performances in both
measures. Interestingly, the ranking of the RMAIP according to the LCA-F measure is better than the

4According to the rules of BioASQ, each system had to participate in at least 4 test sets of a batch in order to be eligible for
the prizes.

5http://bioasq.lip6.fr/general information/Task1a/
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Batch Articles Annotated Articles Labels per article

1 1,942 1,543 10.00
845 701 11.56
793 706 10.87

2,408 586 10.27
6,742 4,194 11.70
4,556 2,503 11.67

Subtotal 17,286 10,233 11.01

2 5,012 1,658 12.39
5,590 1,658 11.48
7,349 2,100 12.93
4,674 1,552 12.37
8,254 2,556 12.18
8,626 2,284 13.20

Subtotal 39,505 11,808 12.42

3 7,650 2,002 12.58
10,233 2,880 13.07
8,861 2,274 12.44
1,986 1,118 10.81
1,750 1,024 10.70
1,357 530 11.14

Subtotal 31,792 9,828 11.79

Total 88,628 31,869 12.01

Table 3.2: Statistics on the test datasets of Task1a.

Reference Systems

Tsoumakas et al. (2013) system1, system2, system3, system4, system5
Ribadas et al. (2013) cole hce1, cole hce2, utai rebayct, utai rebayct 2
Zhu et al. (2013) mc1, mc2, mc3, mc4, mc5
Liu (2013) Wishart-*
Mao and Lu (2013) RMAI, RMAIP, RMAIR, RMAIN, RMAIA
Baselines MTIFL, MTI, bioasq baseline

Table 3.3: Correspondence of reference and submitted systems for Task1a.

one based on MiF which shows that RMAIP is able to give answers in the neighborhood (as designated
by the hierarchical relations among the classes) of the correct ones.

In the other two batches the systems proposed in (Tsoumakas et al., 2013) ranked as the best per-
formed ones occupying the first two places (system3 and system2 for the second batch and system1 and
system 2 for the third batch). Recall, that these systems follow a simple machine learning approach
which uses SVMs and the problem is treated as flat.

We note here the good performance of the learning to rank systems (RMAI, RMAIP, RMAIR,
RMAIN, RMAIA). We are not aware of similar attempts with learning to rank approaches in rel-

D5.1: Technology Overview Report 1
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evant large scale classification challenges like the LSHTC challenge series (htp://lshtc.iit.
demokritos.gr/). Learning to rank methods are usually used in information retrieval tasks for
ranking the retrieved results.

According to the available descriptions, the only systems that made use of the MeSH hierarchy
were the ones introduced by (Ribadas et al., 2013). The top-down hierarchical systems, cole hce1 and
cole hce2, achieved mediocre results while the utai rebayct systems had poor performances. For the
systems based on a Bayesian network, this behavior was expected as they cannot scale well to large
problems. On the other hand the question that arises is whether the use of the MeSH hierarchy can be
helpful for classification systems as the labels that are assigned by the curators to the PubMed articles
do not follow the rule of the most specialized label. That is, an article may have been assigned a specific
label in a deeper level of the hierarchy and in the same time a label in the upper hierarchy that is
ancestor of the most specific one. In this case the system that predicted the more specific label will be
punished by the flat evaluation measures for not predicting the most general label, which is implied by
the hierarchical relations.

D5.1: Technology Overview Report 1
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System Batch 1 Batch 2 Batch 3

MiF LCA-F MiF LCA-F MiF LCA-F

MTIFL 1.25 1.75 2.75 2.75 4.0 4.0
system3 2.75 2.75 1.0 1.0 2.0 2.0
system2 - - 1.75 2.0 3.0 3.0
system1 - - - - 1.0 1.0
MTI - - - - 3.25 3.0
RMAIP 2.50 1.75 5.0 4.5 5.25 5.5
RMAI 3.25 3.0 5.0 4.5 8.5 7.25
RMAIR 6.25 6.0 4.5 3.25 6.25 6.25
RMAIA 5.75 5.5 4.0 5.25 7.25 5.75
RMAIN 4.50 3.25 6.0 5.0 6.5 6.25
Wishart-S3-NP 8.75 9.0 14.25 15.0 - -
Wishart-S1-KNN 8.75 9.25 12.25 12.5 - -
Wishart-S5-Ensemble 9.5 8.0 9.50 10.25 - -
mc4 14.75 14.25 21.0 21.0 21.5 21.25
mc3 11.0 11.25 19.75 19.75 22.0 21.5
mc5 11.25 10.0 15.0 14.75 17.0 17.0
cole hce2 9.25 9.5 11.25 9.25 12.75 12.0
bioasq baseline 14.0 14.0 17.75 16.75 20.75
cole hce1 13.5 13.5 14.75 14.0 16.0 14.75
mc1 8.75 8.25 13.75 13.25 13.0 13.5
mc2 11.25 11.5 17.75 18.25 14.25 15.75
utai rebayct 15.5 16.0 16.75 17.5 19.25 21.5
Wishart-S2-IR 9.75 10.75 8.5 9.25 - -
Wishart-S5-Ngram - - 10.5 9.75 - -
utai rebayct 2 - - - - 18.25 18.5
TCAM-S1 - - - - 11.25 12.25
TCAM-S2 - - - - 12.25 12.25
TCAM-S3 - - - - 12.5 12.5
TCAM-S4 - - - - 12.0 12.75
TCAM-S5 - - - - 12.75 12.0
FU System - - - - 24.0 23.25

Table 3.4: Average ranks for each system across the batches of Task 1a for the measures MiF and LCA-F.
A hyphenation symbol (-) is used whenever the system participated in less than 4 times in the batch.
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3.2 Task 1b

Phase A. Table 3.5 presents the statistics of the training and test data provided to the participants.
Figure 3.2 presents the format of the training data for Task 1b. As in Task 1a the evaluation included
three test batches. For phase A of Task 1b the systems were allowed to submit responses to any of the
corresponding categories, that is documents, concepts, snippets and RDF triples. For each category,
we ranked the systems according to the Mean Average Precision (MAP) measure (Balikas et al., 2013).
The final ranking for each batch is calculated as the average of the individual rankings in the different
categories. The detailed results for Task 1b phase A can be found in http://bioasq.lip6.fr/
results/1b/phaseA/.

Batch Size # of documents # of snippets # of concepts # of triples

training 29 10.31 14.00 4.82 3.67
1 100 14.89 19.89 8.30 21.87
2 100 14.66 20.24 7.58 5.56
3 82 14.47 17.06 6.24 4.50

total 311 14.28 18.70 7.11 9.00

Table 3.5: Statistics on the training and test datasets of Task 1b: numbers of documents, snippets,
concepts and triples refer to averages.

Table 3.6 presents the average ranking of each system in each batch of Task 1b phase A. It is evident
from the results that the participating systems did not manage to perform better than the two baselines
that were used in phase A. Note also that the systems did not respond to all the categories. For example,
the MCTeam systems did not submit snippets throughout the task. Focusing on the specific categories,
like concepts, for the Wishart system we observe that it achieves to have a balanced behavior with respect
to the baselines (Table 3.7). This is evident from the F-measure which is superior to the values of the
two baselines. This can be explained by the fact that the Wishart-S1 system responded with short lists
while the baselines returned always long lists (50 and 100 items respectively). Similar observations hold
also for the other two batches.

Phase B. In phase B of Task 1b the systems were asked to report exact and ideal answers. The systems
were ranked according to the manual evaluation of ideal answers by the BioASQ experts (Balikas et al.,
2013). For reasons of completeness, we report also the results of the systems for the exact answers.

System Batch 1 Batch 2 Batch 3

Top 100 Baseline 1.0 1.875 1.25
Top 50 Baseline 2.5 2.375 1.75
MCTeamMM 3.625 4.5 3.5
MCTeamMM10 3.625 4.5 3.5
Wishart-S1 4.25 3.875 -
Wishart-S2 - 4.125 -

Table 3.6: Average ranks for each system for each batch of phase A of Task 1b. The MAP measure was
used to rank the systems. A hyphen (symbol -) is used whenever the system did not participate in the
corresponding batch.
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1 { "questions": [
2 {
3 "id": "the ID",
4 "body": "the question?",
5 "type": "the type of the question",
6 "concepts": [
7 "c1",
8 "c2",
9 ...

10 "cn"
11 ],
12 "documents": [
13 "d1",
14 "d2",
15 ...
16 "dn"
17 ],
18 "exact_answer": [
19 "ea1",
20 "ea2",
21 ...
22 ],
23 "ideal_answer": "the ideal answer",
24 "snippets":[
25 {
26 "document": "dk",
27 "beginSection": "sections. #b",
28 "endSection": "sections.#e",
29 "offsetInBeginSection": number,
30 "offsetInEndSection": number,
31 "text": "the snippet"
32 }
33 ],
34 "triples": [
35 {
36 "o": "object",
37 "p": "predicate",
38 "s": "subject"
39 },
40 ...
41 ]
42 },
43 ...
44 ]
45 }

Figure 3.2: The format of the training data of Task1b.

System Mean precision Mean recall Mean F-measure MAP GMAP

Top 100 Baseline 0.080 0.858 0.123 0.472 0.275
Top 50 Baseline 0.121 0.759 0.172 0.458 0.203
Wishart-S1 0.464 0.429 0.366 0.342 0.063
MCTeamMM 0.000 0.000 0.000 0.000 0.000
MCTeamMM10 0.000 0.000 0.000 0.000 0.000

Table 3.7: Results for batch 1 for concepts in phase A of Task1b.

To do so, we average the individual rankings of the systems for the different types of questions, that is
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System Batch 1 Batch 2 Batch 3

Wishart-S1 2.0 1.0 -
Wishart-S2 2.0 - -
Wishart-S3 2.0 - -
Baseline1 4.66 2.33 2.33
Baseline2 4.33 4.0 2.66
main system 6.0 4.33 3.0
system 2 - 5.33 3.33
system 3 - 5.5 3.66
system 4 - 5.5 -

Table 3.8: Average ranks for each system and each batch of phase B of Task 1b. The final rank is
calculated across the individual ranks of the systems for the different types of questions. A dash symbol
(-) is used whenever the system did not participate to the corresponding batch.

System Batch 1 Batch 2 Batch 3

Wishart-S1 3.94 4.23 -
Wishart-S2 3.94 - -
Wishart-S3 3.94 - -
Baseline1 2.86 - 3.19
Baseline2 2.73 - 3.17
main system 3.35 3.39 3.13
system 2 - 3.34 3.07
system 3 - 3.34 2.98
system 4 - 3.34 -

Table 3.9: Average scores for each system and each batch of phase B of Task 1b for the ideal answers.
The final score is calculated as the average of the individual scores of the systems for the different
evaluation criteria. A hyphenation symbol (-) is used whenever the system did not participate in the
corresponding batch.

Yes/No, factoids and list.
Table 3.8 presents the average ranks for each system for the exact answers. In this phase we note

that the Wishart system was able to outperform the BioASQ baselines.
Table 3.9 presents the average scores6 of the biomedical experts for each system across the batches.

Note that the scores are between 1 and 5 and the higher it is the better the performance. According to the
results, the systems were able to provide comprehensible answers, and in some cases like in the second
batch, highly readable ones. For example Table 3.10 presents the answer of the Wishart-S1 system along
with the golden answer to the question: Which drug should be used as an antidote in benzodiazepine
overdose? Of course the quality of the answer depends on the difficulty of the question. This seems to
be the case in the last batch were the average scores are lower with respect to the other batches. Also, the
calculated measures using ROUGE seem to be consistent with the manual scores in the first two batches
while the situation is inverted in the third batch.

6Please consult the description of the evaluation measures used in the challenge for more information .
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Wishart-S1 golden answer

Benzodiazepine (BZD) overdose (OD) continues to cause signifi-
cant morbidity and mortality in the UK. Flumazenil is an effective
antidote but there is a risk of seizures, particularly in those who
have co-ingested tricyclic antidepressants. (PMID: 21785147)
Flumazenil is a benzodiazepine antagonist. It is widely used as
an antidote in comatose patients suspected of having ingested a
benzodiazepine overdose. (PMID: 19500521)

Flumazenil should be used in all patients presenting with suspected
benzodiazepine overdose. Flumazenil is a potent benzodiazepine
receptor antagonist that competitively blocks the central effects of
benzodiazepines and reverses behavioral, neurologic, and electro-
physiologic effects of benzodiazepine overdose. Clinical efficacy
and safety of flumazenil in treatment of benzodiazepine overdose
has been confirmed in a number of rigorous clinical trials. In ad-
dition, flumazenil is also useful to reverse benzodiazepine induced
sedation and to and to diagnose benzodiazepine overdose.

Table 3.10: The ideal answers returned from the system Wishart-S1 along with the golden one.
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CHAPTER 4

Prizes

Tables 4.1 presents the prizes that were awarded to the winners of each task.

Participant Task Place Prize (in Euros)

Tsoumakas G. 1a 1st and 2nd 2,750

Dongqing Zhu 1b (Phase A) 1st 600
Mayo Clinic 1b (Phase A) 1st 1,000
Liu Yifeng (University of Alberta) 1b (Phase A) 2nd 900

Liu Yifeng (University of Alberta) 1b (Phase B) 1st 1,600
Kota Makise (Toyota Institute) 1b (Phase B) 2nd 900

Total 7,750

Table 4.1: Prizes of Task1a and Task1b.

Liu Yifeng has also received the additional best overall contribution award sponsored by Transin-
sight. For more information please consult the corresponding Web page http://www.bioasq.
org/participate/prizes.
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CHAPTER 5

Conclusions and Potential Impact

5.1 Task 1a

In the first task of BIOASQ a sufficient number of teams participated submitting a large number of sys-
tems. The majority of the systems were able to successfully cope with both the large scale of the problem
as well as the on-line evaluation procedure. From the results, we can draw three main conclusions:

• The majority of the systems were able to achieve good performance being able to outperform the
weak baseline throughout the batches.

• The best systems were able to outperform the strong baseline (MTIFL), thus pushing the state-of-
the-art. We regard this as a very important achievement towards the goal of developing accurate
classification systems for large-scale problems.

• A variety of methods have been used by the participants like pure machine learning approaches,
search-based approaches and learning-to-rank approaches. The different technologies that were
used allowed us to asses them on a very large-scale scenario. More specifically, simple machine
learning approaches like the ones used in (Tsoumakas et al., 2013) are able to achieve state-of-the-
art results. Additionally, the learning-to-rank approach followed in (Mao and Lu, 2013) showed
that such systems can be effective for large-scale classification tasks. On the other hand, the
hierarchical approach employed in (Ribadas et al., 2013) achieved moderate results revealing the
fact that the MeSH hierarchy may not be appropriate for classification tasks.

5.2 Task 1b

Only a few systems participated in the second task of the BIOASQ challenge, so that we cannot draw
safe conclusions. Additionally, in phase A the participating systems were not able to outperform the
baselines. As the systems seem to follow well principled ways to construct queries, we cannot conclude
whether their low performance can be attributed to the use of low performing methods. Other factors
should also be considered, like whether the systems were able to retrieve appropriate responses from the
designated resources.
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Concerning phase B of the task, the participating systems were able to obtain better performance
than that of the baselines. Again, the low participation does not allow to make any safe conclusions.
Interestingly, the automatic measures that were used to asses the ideal answers seem to be in accordance
with the manual scores assigned by the BIOASQ experts in the first two batches of the task, while in the
third one the measure had a different behavior.

5.3 Potential Impact of New Technologies

From the analysed approaches above, we distinguished the best two, i.e. the best rated system presented
in (Tsoumakas et al., 2013) as well as the second ranked one (Mao and Lu, 2013), in order to discuss
their impact on specialized search engines (e.g. GoPubMed).

The top rated systems which were able to improve substantially over the MTI baseline follow differ-
ent approaches. The best rated system presented in (Tsoumakas et al., 2013) followed a pure machine
learning approach employing SVMs while the second ranked one followed a hybrid approach mixing
an information retrieval phase and a learning-to-rank procedure (Mao and Lu, 2013). While the former
approach is able to provide better results the latter enjoys faster training and inference times (very crucial
for on-line search engines like GoPubMed). So, potentially both technologies could be used in order to
boost the prediction capabilities of a search engine where the first can be employed in an off-line sce-
nario for improving the annotations of the articles in the database. The technologies of the latter system
can be integrated in the front-end of the search engine in order to provide accurate and fast results to the
users. In addition, the approaches developed and submitted in the framework of Task 1b, may be used
as a basis to develop Q&A expansions of GoPubMed. Based on this observation, GoPubMed could be
among the first search engines to launch a fully fledged Q&A for the biomedical domain in the search
engine market. More details on the potential impact of the proposed approaches in BioASQ challenges
will be presented in the deliverable D2.11 (Exploitation and dissemination plan).
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APPENDIX A

Appendix
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