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Executive Summary

This deliverable reviews the systems that participated during the second BIOASQ challenge and performs
an analysis of the results. More specifically, in the deliverable a short description of each system is given
providing also the key technologies that have been used. The objective of this deliverable is to identify the
most promising approaches and to point out the progress made with the state-of-the-art.

The challenge comprised two tasks: a) large-scale online biomedical indexing (Task 2a) and b) biomedical
semantic QA (Task 2b). Both tasks run in five consecutive batches.

In Task 2a 18 teams participated using 61 registered systems. The systems were evaluated in several
performance measures and compared against two baseline systems. Most of them were able to cope with
the large scale of the problem while three of them achieved to systematically outperform the state-of-the-art
baseline (Medical Text Indexer). A variety of methods have been used like machine learning approaches or
search-based ones and hierarchical or flat ones. Specifically, the best systems achieved to enlarge the margin
of performance with the MTI system which also this year improved its performance.

In Task 2b 8 teams participated in both phases of the task with a total of 15 systems. In both phases
the systems were able to achieve good performances and in most cases to achieve better results than the
baselines.

@E D5.3: Technology Overview Report 2
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Introduction

This deliverable reviews the systems that participated during the second BIOASQ challenge and performs
an analysis of the results. More specifically, in the deliverable a short description of each system is given
providing also the key technologies that have been used. The objective of this deliverable is to identify the
most promising approaches and to point out the progress made with the state-of-the-art.

The remainder of the deliverable is as follows:

e Chapter 1 describes briefly the BIOASQ challenge providing also details of the evaluation procedure
along with the corresponding time plans. Additionally, for each of the two tasks of the challenge, the
total numbers of the participating systems and teams are reported.

e Chapter 2 reviews, for the two tasks, the systems that participated in the challenge. This review is
based on the available descriptions provided by the participants. For each system, we present the key
points of the proposed methods.

e Chapter 3 presents the results of the evaluation procedure available from the BIOASQ evaluation plat-
form’.

o Chapter 4 presents the prizes awarded to the winners of each task.

¢ Chapter 5 concludes this deliverable by commenting on the advancement of the state-of-the-art in the
biomedical semantic indexing and question answering domain. Also, it discusses the potential impact
of the technologies on specialized search engines.

1.1 Challenge Description

The challenge comprised two tasks: (1) a large-scale semantic indexing task (Task 2a) and (2) a question
answering task (Task 2b).

Thttp://bioasq.lip6.fr
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1.1.1 Large-scale semantic indexing

In Task 2a the goal is to classify documents from the PubMed? digital library unto concepts of the MeSH?
hierarchy. Here, new PubMed articles that are not yet annotated are collected on a weekly basis. These
articles are used as test sets for the evaluation of the participating systems. As soon as the annotations
are available from the PubMed curators, the performance of each system is calculated by using standard
information retrieval measures as well as hierarchical ones. The winners of each batch were decided based
on their performance in the Micro F-measure (MiF) from the family of flat measures (Tsoumakas et al., 2010),
and the Lowest Common Ancestor F-measure (LCA-F) from the family of hierarchical measures (Kosmopoulos
et al., 2013). For completeness, several other flat and hierarchical measures were reported (Balikas et al.,
2013). In order to provide an on-line and large-scale scenario, the task was divided into three independent
batches. In each batch 5 test sets of biomedical articles were released consecutively. Each of these test sets
were released in a weekly basis and the participants had 21 hours to provide their answers. Figure 1.1 gives
an overview of the time plan of Task 2a.
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Figure 1.1: The time plan of Task 2a.

1.1.2 Biomedical semantic QA

The goal of task 2b was to provide a large-scale question answering challenge where the systems should be
able to cope with all the stages of a question answering task, including the retrieval of relevant concepts and
articles, as well as the provision of natural-language answers.

Task 2b comprised two phases: In phase A, BioASQ released questions in English from benchmark datasets
created by a group of biomedical experts. There were four types of questions: “yes/no” questions, “factoid”
guestions,“list” questions and “summary” questions (Balikas et al., 2013). Participants had to respond with
relevant concepts (from specific terminologies and ontologies), relevant articles (PubMed and PubMedCen-
tral* articles), relevant snippets extracted from the relevant articles and relevant RDF triples (from specific
ontologies). In phase B, the released questions contained the correct answers for the required elements
(concepts, articles, snippets and RDF triples) of the first phase. The participants had to answer with exact
answers as well as with paragraph-sized summaries in natural language (dubbed ideal answers).

The task was split into five independent batches. The two phases for each batch were run with a time
gap of 24 hours. For each phase, the participants had 24 hours to submit their answers. We used well-
known measures such as mean precision, mean recall, mean F-measure, mean average precision (MAP) and
geometric MAP (GMAP) to evaluate the performance of the participants in Phase A. The winners were se-
lected based on MAP. The evaluation in phase B was carried out manually by biomedical experts on the ideal
answers provided by the systems. For the sake of completeness, ROUGE (Lin, 2004) is also reported.

2http://www.ncbi.nlm.nih.gov/pubmed/
3http://www.ncbi.nlm.nih.gov/mesh/
“http://www.ncbi.nlm.nih.gov/pmc/
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Figure 1.2: The time plan of Task 2b. The two phases for each batch run in consecutive days.
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Technology Overview

2.1 Task2a

2.1.1 Background and Related Work

Background. Task la deals with the semantic indexing of biomedical documents with concepts from the
MeSH hierarchy. Typically the problem is tackled like a classification one where one should build classification
models that assign classes from the designated hierarchy to documents. Under this setting, the training set
can be represented by S = {(x(), y())}7 . In the context of text classification, (") € X’ denotes the vector
representation of the i-th document in the input space X C R™. Assuming that there are K classes denoted
by the set Y = {y1 ...y}, the label y(i) € Y represents the class associated with the instance x®_n
text classification the features (or terms) of the vector representation are the distinct words that occur in the
training data. Each element x;. of the vector representation can be either a binary value (0/1), expressing
the absence or the presence of the specific word in the document, or a real value calculated by statistical
techniques. A simple approach (term frequency) is to calculate the number of occurrences of each word
in the document. The most popular scheme is the ¢ f * idf (term-frequency inverse document frequency)
where the t f is the term frequency of a specific term t and idf = In dﬂft is the logarithm of the number of the
documents in the collection divided by the number of documents that contain the term. The idf is a measure
of the importance of a specific term in the collection. For example, very common words will have a low idf
value. A standard chain for producing the vectors is the following: tokenization, stemming/lemmatization
and stop-word removal.

Related work. There have been proposed several approaches for large-scale classification which either
leverage the hierarchy information (a simple tree hierarchy is presented in Figure 2.1) by taking into account
the parent-child relations among the classes (hierarchical methods) or they totally ignore this information
(flat measures). Hierarchical methods suffer from the fact that the errors made at an upper level of the
hierarchy are unrecoverable. On the other hand, flat methods are very slow in terms of training and testing
compared to hierarchical methods (Babbar et al., 2013).

Some of the earlier works on exploiting hierarchy among target classes for the purpose of text classifica-
tion has been studied in (Koller and Sahami, 1997). Parameter smoothing for Naive Bayes classifier along the

@E D5.3: Technology Overview Report 2
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Figure 2.1: A simple tree hierarchy.

root to leaf path was explored by (McCallum et al., 1998). Maximum margin based approaches have been pro-
posed in (Cai and Hofmann, 2004; Dekel et al., 2004), where the degree of penalization in mis-classification
depends on the distance between the true and predicted class in the hierarchy tree. However, these ap-
proaches were applied to the datasets in which the number of categories were limited to a few hundreds.
Liu et al. (2005) applied hierarchical SVM to the scale with over 100,000 categories in Yahoo! directory. More
recently, other techniques for large scale hierarchical text classification have been proposed. Prevention of
error propagation by applying Refined Experts trained on a validation was proposed in (Bennett and Nguyen,
2009). In this approach, bottom-up information propagation is performed by utilizing the output of the lower
level classifiers in order to improve the classification of top-level classifiers. Deep Classification (Xue et al.,
2008) proposes hierarchy pruning to first identify a much smaller subset of target classes. Prediction of a test
instance is then performed by re-training Naive Bayes classifier on the subset of target classes identified from
the first step. More recently, Bayesian modelling of large scale hierarchical classification has been proposed
by Gopal et al. (2012) in which hierarchical dependencies between the parent-child nodes are modelled by
centering the prior of the child node at the parameter values of its parent.

Hierarchy simplification by flattening entire layer in the hierarchy has been studied from an empirical
view-point in (Wang and Lu, 2010; Malik, 2009). These strategies for taxonomy adaptation by flattening do
not provide any theoretical justification for applying this procedure. Moreover, they offer no clear guidelines
regarding which layer in the hierarchy one should flatten. Most of the existing approaches to large scale
classification have focussed on the two extremes of flat or hierarchical classification. An approach based on
taxonomy embedding has been proposed in (Weinberger and Chapelle, 2009), but this has been restricted
to only small scale problems, wherein the target classes are of the order of few hundreds.

Apart from accuracy, other important factors while evaluating the classification strategies for large scale
classification are training and prediction speed. The comparison of training time complexity for flat and hier-
archical classification in the context of large taxonomies has been studied in (Liu et al., 2005). Learning the
hierarchy tree from large number of classes in order to make faster prediction has also attained significance
as explored in the recent works such as (Bengio et al., 2010; Beygelzimer et al., 2009; Gao and Koller, 2011).
The aim in these approaches is to achieve better prediction speed while maintaining the same classification
accuracy as flat classification. On the other end of the specturm are flat classification techniques such as em-
ployed in (Perronnin et al., 2012) which ignore the hierarchy structure. These strategies are likely to perform
well for balanced hierarchies with sufficient training instances per target class and not so well in large scale
taxonomies which suffer from the problem of rare classes.

2.1.2 Systems Overview

The participating systems in the semantic indexing task of the BIOASQ challenge adopted a variety of ap-
proaches including hierarchical and flat algorithms as well as search-based approaches that relied on infor-
mation retrieval techniques. In the rest of this section we describe the proposed systems and stress their key

@E D5.3: Technology Overview Report 2
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characteristics.

The new NCBI system (Yuging Mao, 2014) for Task 2a is an extension of the work presented in 2013 and
relies on the generic learning-to-rank approach presented in (Huang et al., 2011). This approach, differs from
the previous approach in the following aspects: a) for each label a binary classifier is trained and the MeSH
terms suggested by these classifiers are added in the candidate list of labels, b) the set of documents used
as neighbor documents was reduced to documents indexed after 2009. Moreover, the score function for the
selection of the number of features was changed from a linear to a logarithmic approach.

In (Papanikolaou et al., 2014) flat classification processes were employed for the semantic indexing task.
In particular, the authors trained binary SVM classifiers for each label that was present in the data. In order to
reduce the complexity they trained the SVMs in fractions of the data. They trained two systems on different
corpus: Asclepios on 950 thousand documents and Hippocrates on 1.5 million documents. Those systems
output a ranked lists with labels and a meta-model, namely Metalabeler (Tang et al., 2009), is used to decide
the number of labels that will be submitted for each document. The remaining three systems of the team
employ ensemble learning methods. The approach that worked best was a combination of Hippocrates with
a model of simple binary SVMs, which were trained by changing the weights parameter for positive instances
(Lewis et al., 2004). During the training of a classifier with very few positive instances a false negative is
penalized (a positive instance being misclassified) more than a false positive (a negative instance being mis-
classified). The proposed approaches, although they are relatively simple, require a lot of processing power
and memory. For that reason they used a machine with 40 processors and 1TB RAM.

Ribadas-Pena et al. (2014) employ hierarchical models based on a top-down hierarchical classification
scheme (Silla and Freitas, 2011) and a Bayesian network which models the hierarchical relations among the
labels as well as the training data. The team participated in the first edition of the BioASQ challenge using
the same technologies (Ribadas et al., 2013). In the current competition they focused on the pre-processing
of the textual data while keeping the same classification models. More specifically, the authors employ tech-
niques for identifying abbreviations in the text and expanding it afterwards in order to enrich the document.
Also, a part of speech tagger is used in order to tokenize the text and identify noun, verbs, adjectives and un-
known elements (not identified). Finally, a lemmatization step extracts the canonical forms of those words.
Additionally, the authors extract word bigrams and keep only those that are identified as multiword terms.
The rational is that multiword terms in a domain with complex terminology, like biomedicine, provide higher
discriminant power.

In (Choi and Choi, 2014) the authors use a standard flat classification scheme, where a SVM is trained for
each class label in MeSH. Different training set methodologies are used resulting in different trained classi-
fiers. Due to computational issues only 50,000 documents were used for training. The selection of the best
classification scheme is optimized on the precision at top k labels on a validation set.

In (Liu et al., 2014) the authors used the learning to rank (LTR) method for predicting MeSH headings.
However, in addition to the information from similar citations, they also used the prediction scores from
individual MeSH classifiers to improve the prediction accuracy. In particular, they trained a binary classifier
(logistic regression) for each label in the training data. For a target citation, using the trained classifiers, they
calculated the classification probability (score) of every MeSH heading. Then, using NCBI efetch',the system
retrieves similar documents and their MeSH terms are used as candidate answers. The similarity scores of the
target document and the documents retrieved are calculated and averaged over these documents. Finally,
these two scores, together with the default results of NLM official solution MTI, were considered as features
in the LTR framework. The LambdaMART (Burges, 2010) was used as the ranking method in the learning to
rank framework.

Adams and Bedrick (2014) proposed a system which uses Latent Semantic Analysis to identify seman-
tically similar documents in MEDLINE and then constructs a list of MeSH headers from candidates selected

Thttp://www.ncbi.nlm.nih.gov/books/NBK25499/
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from the documents most similar to a new abstract.
Table 2.1 resumes the principal technologies that were employed by the participating systems and whether
a hierarchical or a flat approach has been followed.

Reference Approach Technologies

Papanikolaou et al. (2014) flat SVMs, Metalabeler Tang et al. (2009), Ensemble learning
Ribadas-Pena et al. (2014) hierarchical SVMs, Bayes networks

Choi and Choi (2014) flat SVMs

Liu et al. (2014) flat Logistic regression, learning-to-rank

Adams and Bedrick (2014) flat Latent Semantic Analysis

Yuging Mao (2014) flat Learning-to-rank

Table 2.1: Technologies used by participants in Task 2a.

Baselines. During the first challenge, two systems were used as baseline systems. The first one, called
BioASQ_Baseline, follows an unsupervised approach to tackle the problem; it is thus expected that the sys-
tems developed by the participants will outperform it. More specifically, the baseline implements Attribute
Alignment Annotator (Doms, 2010). It is an unsupervised method, based on the Smith-Waterman sequence
alignment algorithm (Smith and Waterman, 1981) and can recognizes terms from MeSH and Gene Ontology
in a given text passage. The annotator first pre-processes both the ontology terms and the text by tokenizing
them, removing the stop words and stemming the remaining terms (an in-house stop word list that is specific
to the domain is used). Then the term stems are mapped onto the text stems using the local sequence align-
ment algorithms (Smith and Waterman, 1981). Insertions, deletions and gaps are penalized. The information
value of terms calculated over the whole ontology is also taken into account during the alignment process,
in a similar manner as the inverse document frequency score is used for the tf-idf weighting of terms.

The second baseline is a state-of-the-art method called Medical Text Indexer (James G. Mork, 2014) which
is developed by the National Library of Medicine? and serves as a classification system for articles of MEDLINE.
MTl is used by curators in order to assist them in the annotation process. The new annotator is an extension
of the system presented in (Mork et al., 2013) with the approaches of the last year’s winner (Tsoumakas et al.,
2013). Consequently, we expected the baseline to difficult to beat.

2.2 Task2b

As mentioned above, the second task of the challenge is split into two phases. In the first phase, where the
goal is to annotate questions with relevant concepts, documents, snippets and RDF triples 8 teams with 22
systems participated. In the second phase, where team are requested to submit exact and paragraph-sized
answers for the questions, 7 teams with 18 different systems participated.

The system presented in (Neves, 2014) relies on the Hana Database for text processing. It uses the Stan-
ford CoreNLP package for tokenizing the questions. Each of the token is then sent to the BioPortal and to
the Hana database for concept retrieval. The concepts retrieved from the two systems are finally merged
to a single list that is used to retrieve relevant text passages from the documents at hand. To this end, four
different types of queries are sent to the BIOASQ services. Overall, the approach achieves between 0.18 and
0.23 F-measure.

In phase A, NCBI’s framework (Yuging Mao, 2014) used the cosine similarity between question and sen-
tence to compute their similarity. The best scoring sentence from an abstract was chosen as relevant snippet
for an answer. Concept retrieval was achieved by a customized dictionary lookup algorithm in combination

2http://ii.nIm.nih.gov/MTI/index.shtml
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with MetaMap. For phase B, tailored approaches were used depending on the question types. For exam-
ple, a manual set of rules was crafted to determine the answers to factoid and list questions based on the
benchmark data for 2013. The system achieved an F-measure of up to betwen 0.2% (RDf triples) and 38.48%
(concepts). It performed very well on Yes/No questions (up to 100% accuracy). Factoid and list questions led
to an MRR of up to 20.57%.

In (Choi and Choi, 2014) the authors participated only in the document retrieval of phase A and in the
generation of ideal answers in phase B. The Indri search engine is used to index the PubMed articles and
different models are used to retrieve documents like pseudo-relevance feedback, sequential dependence
model and semantic concept-enriched dependence model where the retrieved UMLS concepts in the query
are used as additional dependence features for ranking documents. For the generation of ideal answers the
authors retrieve sentences from documents and identify the common keywords. Then the sentences are
ranked according to the number of times these keywords appear in each of them and finally the top ranked
m are used to form the ideal answer. Despite the simplicity of the approach it achieves to perform well in
both documents and ideal answers.

The authors of (Lingeman and Dietz, 2014) propose a method for the retrieval of relevant documents and
snippets of task 2b. They develop a figure-inspired text retrieval method as a way of retrieving documents
and text passages from biomedical publications. The method is based on the insight that for biomedical pub-
lications, the figures play an important role to the point that the captions can be used to provide abstract
like summaries. The proposed approach uses an Information Retrieval perspective on the problem. In prin-
ciple, the followed steps are: (i) the question is enriched by query expansion with information from UMLS,
Wikipedia, and Figures, (ii) a ranking of full documents and snippets is retrieved from a corpus of PubMed
Central Articles which is the set of full-text available articles, (iii) features are extracted for each document
and snippet that provide proof of its relevance for the question and (iv) the documents/snippets are re-ranked
with a learning-to-rank approach.

In the context of phase B of task 2b in (Papanikolaou et al., 2014), the authors attempted to replicate the
work that already exists in literature and was presented in the BioASQ 2013 workshop (Weissenborn et al.,
2013). They provided exact answers only for the factoid questions. Their system tries to extract the lexical
answer type by manipulating the words of the question. Then, the relevant snippets of the question which
are provided as inputs for this tasks are processed with the 2013 release of MetaMap (Aronson and Lang,
2010) in order to extract candidate answers.

Baselines. Two baselines were used in phase A. The systems return the list of the top-50 and the top-
100 entities respectively that may be retrieved using the keywords of the input question as a query to the
BIOASQ services. As a result, two lists for each of the main entities (concepts, documents, snippets, triples)
are produced, of a maximum length of 50 and 100 items respectively.

For the creation of a baseline approach in Task 2B Phase B, three approaches were created that address
respectively the answering of factoid and lists questions, summary questions, and yes/no questions (Weis-
senborn et al., 2013). The three approaches were combined into one system, and they constitute the BIOASQ
baseline for this phase of Task 2B. The baseline approach for the list/factoid questions utilizes and ensembles
a set of scoring schemes that attempt to prioritize the concepts that answer the question by assuming that
the type of the answer aligns with the lexical answer type (type coercion). The baseline approach for the
summary questions introduces a multi-document summarization method using Integer Linear Programming
and Support Vector Regression.

@E D5.3: Technology Overview Report 2
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Setup and Results

3.1 Task2a

3.1.1 Data and Setup

During the evaluation phase of the Task 2a, the participants submitted their results on a weekly basis to the
online evaluation platform of the challenge’. The evaluation period was divided into three batches containing
5 test sets each. 18 teams were participated in the task with a total of 61 systems. 12,628,968 articles with
26,831 labels (20.31GB) were provided as training data to the participants. A reduced training dataset was
also provided to the participants containing only the articles from the journals that the test sets are drawn.
This dataset contained 4,458,300 documents using 26,631 MeSH terms. Figure 3.1 presents the category size
distribution of this dataset. We can observe that a lot of categories have a few documents which is typical in
large taxonomies (Yang et al., 2003; Babbar et al., 2014). Table 3.1 presents basic statistics on the provided
training data.

Training set 2013  Training set 2014 Reduced tr. set 2014

# of articles 10,876,004 12,628,968 4,458,300
Avrg. labels/article 12.55 12.72 13.20
MeSH labels 26,563 26,831 26,631
Size zip/unzip (raw) 5.1Gb/18Gb 6.2G/20.31Gb 1.9Gb/6.4Gb
Size zip/unzip (Lucene) 4.8Gb/6.2Gb 4.4G/6.2Gb 1.3Gb/1.9Gb

Table 3.1: Statistics of the training data provided to the participants for Task 2A. We also provide the statistics
for the data of the first edition of the BIOASQ competition.

Table 3.2 shows the number of articles in each test set of each batch of the challenge. The articles were
provided to the participants in their raw format (plain text) as well as in a pre-processed one (in a vector-

Thttp://bioasq.lip6.fr
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Figure 3.1: Category size vs. rank distribution for the training data in Task 2A.

ized format) under the Apache Lucene framework?. Lucene is an open-source library® dedicated to text
search.Figure 3.2 presents an example of two articles extracted from the BIOASQ benchmark training data.

Batch Articles Annotated Articles Labels per article
1 4,440 3,263 13.20
4,721 3,716 13.13

4,802 3,783 13.32

3,579 2,341 13.02

5,299 3,619 13.07

Subtotal 23,321 16,722 13.15
2 4,085 3,322 13.05
3,496 2,752 12.28

4,524 3,265 12.90

5,407 3,848 13.23

5,454 3,642 13.58

Subtotal 22,966 16,829 13.01
3 4,342 2,996 12.71
8,840 5,783 13.37

3,702 2,737 13.32

4,726 3,225 13.90

4,533 3,196 12.70

Subtotal 26,143 17,929 13.20
Total 72,430 51,480 13.12

Table 3.2: Statistics on the test datasets of Task 2a. The datasets were updated the 29th of June 2014.

Table 3.3 presents the correspondence of the systems for which a description was available and the sub-
mitted systems in Task 2a. The systems MTIFL, MTI-Default and BioASQ_Baseline were the baseline systems
used throughout the challenge. MTIFL and MTI-Default refer to the NLM Medical Text Indexer system (James

2http://lucene.apache.org/
3Under the Apache Licence: http://www.apache.org/licenses/LICENSE-2.0.html
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{
¥abstractText”:”From the above it is seen that the [...]
scientific guidance of which lies wholly
in the hands of scientists.”,
»”journal”:”Science (New York, N.Y.)”,
”meshMajor”:[”Biomedical Research”],
¥pmid”:717772322%,
”title”:”New Horizons in Medical Research.”,
Yyear”:71946>
}J
{
¥abstractText”:”1. T antigens of group A hemolytic
streptococci have been [...] T antigen in the intact
streptococcus from which it was derived.”,
”journal”:”The Journal of experimental medicine”,
”meshMajor”:[”Antibodies”,”Antigens”,
»Immunity”,”Streptococcal Infections”,”Streptococcus™],
»pmid”:”’19871581”,
”title”:”THE PROPERTIES OF T ANTIGENS EXTRACTED
FROM GROUP A HEMOLYTIC STREPTOCOCCI.”,
Yyear”:”1946”
}
Figure 3.2: An extract from the training data of Task2a.
Reference Systems
Papanikolaou et al. (2014) Asclepius, Hippocrates, Sisyphus
Ribadas-Pena et al. (2014) cole_hcel, cole_hce2, cole_hce_ne, utai_rebayct, utai_rebayct_2
Choi and Choi (2014) SNUMedInfo*
Liu et al. (2014) Antinomyra-*
Yuging Mao (2014) L2R*
Baselines MTIFL, MTI-Default, bioasq_baseline

Table 3.3: Correspondence of reference and submitted systems for Task 2a.

G. Mork, 2014). Systems that participated in less than 4 test sets in each batch are not reported in the results*.

Figure 3.3 presents the MiF measure for the best system in each test test against the MTI baseline as
well as the average performance of all the systems participated in the task. For comparison reasons we also
report the corresponding performances for last year competition (Task 1a). Interestingly, we first notice that
the MTI baseline achieves a performance similar to that of the best system in last year’s task. This is due to
the accommodation of several features in the MTI baseline system from last year’s top performed system
which shows the impact of the technologies presented in the BIOASQ competition. Secondly, we observe
clearly that this year the best system achieves a far better performance than the MTI baseline with the gap
growing at the test sets. Finally, the average performance of the systems has also been improved which is
an indication of the quality of the submitted systems this year. We observer a similar trend for the LCA-F

“According to the rules of BioASQ, each system had to participate in at least 4 test sets of a batch in order to be eligible for the
prizes.
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Figure 3.3: Comparison of the MiF measure for the best system in each test set against the MTI baseline and
the average performance of all the systems participated in the task. The results for both versions (Task 1a
and Task 2a) of the semantic indexing task are presented.
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Figure 3.4: Comparison of the MiF measure for the best system in each test set against the MTI baseline and
the average performance of all the systems participated in the task. The results for both versions (Task 1a
and Task 2a) of the semantic indexing task are presented.

measure which is depicted in Figure 3.4.

According to Demsar (2006) the appropriate way to compare multiple classification systems over multiple
datasets is based on their average rank across all the datasets. On each dataset the system with the best
performance gets rank 1.0, the second best rank 2.0 and so on. In case that two or more systems tie, they all
receive the average rank. Table 3.1.1 presents the average rank (according to MiF and LCA-F) of each system
over all the test sets for the corresponding batches. Note, that the average ranks are calculated for the 4 best
results of each system in the batch according to the rules of the challenge®. The best ranked system at each
batch and at each evaluation measure is highlighted with bold typeface.

First, we can observe that several systems outperforms the strong MTI baseline in terms of MiF and LCA
measures exhibiting state-of-the-art performances. During the first batch the flat classification approach
(Asclepius system) used in (Papanikolaou et al., 2014) tops the performance in the case of the MiF measure.
This system follows a flat approach with linear complexity in the number of classes. Thus it requires large
inference time in large-scale scenarios.

In the other two batches the learning-to-rank systems proposed by NCBI (L2R systems) and the Fudan
University (Antinomyra systems) ranked as the best performed ones occupying the first two places in both
measures. The Fudan team achieves the best performance in both batches for both evaluation measures.
Note, that this systems uses the confidence values of the classifiers trained for each MeSH label as features

Shttp://bioasq.lip6.fr/general_information/Task1a/
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in the meta-learning problem.

We performed statistical tests among the best systems of each team in order to detect significant differ-
ences. More specifically, for both evaluation measures we performed a micro sign test (s-test) as proposed
in (Yang and Liu, 1999) for each pair of the top systems. In all cases the tests reported significant differences
for p-value<0.01.

According to the available descriptions the only systems that made of use of the MeSH hierarchy were
the ones introduced by Ribadas et al. (2013). The top-down hierarchical systems, cole_hcel, cole_hce2 and
cole_hce_ne achieved mediocre results. while the utai_rebayct systems had poor performances. On the
other hand hierarchical systems are much faster in inference time than flat ones making them appealing for
large-scale problems. For the systems based on a Bayesian network this behaviour was expected as they
cannot scale well to large problems. On the other hand the question that arises is whether the use of the
MeSH hierarchy can be helpful for classification systems as the labels that are assigned by the curators to
the PubMed articles do not follow the rule of the most specialized label. That is, an article may have been
assigned a specific label in a deeper level of the hierarchy and in the same time a label in the upper hierarchy
that is ancestor of the most specific one. In this case the system that predicted the more specific label will be
punished by the flat evaluation measures for not predicting the most general label, which is implied by the
hierarchical relations.

@E D5.3: Technology Overview Report 2



3.1. Task 2a page 15 of 26

System Batch 1 Batch 2 Batch 3

MiF LCA-F MiF LCA-F MiF LCA-F
Asclepius 1.0 3.25 7.75 7.75 - -
L2R-n1 3.0 3.25 5.75 3.75 8.0 5.75
L2R-n5 4.25 5.75 4.5 4.5 7.75 8.75
L2R-n3 4.25 2.25 4.75 6.75 7.25 7.0
L2R-n2 2.75 1.5 4.75 4.0 6.0 4.25
L2R-n4 4.25 5.25 6.0 3.5 8.5 7.75
FU_System_t25 13.5 13.25 20.0 18.75 - -
MTIFL 8.0 8.0 18.25 20.5 15.25 15.25
MTI-Default 6.25 5.5 13.0 10.75 14.25 14.25
FDU_MeSHIndexing_3 - - 16.0 16.25 -
FU_System_k25 15.75 15.25 19.75 19.25 - -
FU_System_k15 15.50 13.75 17.75 15.0 - -
FU_System_t15 14.50 13.0 19.5 17.75 - -
Antinomyra0 - - 3.0 3.5 1.75 5.0
Antinomyral - - 8.75 7.75 2.0 3.25
Antinomyra3 9.50 12.25 5.0 5.25 3.5 1.75
Antinomyra2 - - 6.0 7.25 2.0 2.5
Antinomyra4 12.75 14.0 8.5 7.25 4.25 3.25
FU_System 18.50 16.75 15.75 16.0 - -
FDU_MeSHIndexing_1 - - 14.25 13.75 - -
FDU_MeSHIndexing_2 - - 15.75 14.75 - -
Micro 21.75 22.75 24.0 27.5 23.25 28.0
PerExample 21.75 21.75 26.5 26.5 25.25 26.0
Sisyphus - - 6.25 12.25 10.5 12.75
Hippocrates - - 6.2 6.75 11.5 9.5
Macro 25.00 245 32.75 30.75 32.25 30.5
Spoon 21.25 20.75 34.0 33.75 - -
Accuracy - - 34.0 33.25 33.25 37.25
Fork 21.75 22.25 36.25 37.75 - -
Spork 23.00 23.25 37.25 38.75 - -
bioasq_baseline 23.75 23.25 39.5 36.0 36.75 34.25
ESIS1 - - 35.75 34.25 18.0 18.5
ESIS - - 36.75 35.75 23.75 25.75
ESIS2 - - 26.75 27.0 19.25 19.75
ESIS3 - - - - 20.25 18.5
ESIS4 - - - - 20.5 22.25
cole_hcel - - 24.5 23.75 255 20.25
cole_hce_ne - - 26.5 25.25 26.75 22.5
cole_hce2 - - 27.25 25.75 28.0 22.25
SNUMedinfo3 - - 32.0 335 19.5 24.75
SNUMedinfo4 - - 32.75 32.0 21.75 235
SNUMedinfol - - 33.50 34.75 25.25 28.0
SNUMedinfo5 - - 33.75 32.75 20.5 225
SNUMedinfo2 - - 34.25 35.5 19.75 23.75
utai_rebayct - - 38.50 38.75 34.75 34.25
utai_rebayct_2 - - 36.50 34.75 31.75 28.5
vanessa-0 - - - - 27.75 25.0
larissa-0 - - - - 37.0 36.5

Table 3.4: Average ranks for each system across the batches of the challenge for the measures MiF and LCA-F.
A hyphenation symbol (-) is used whenever the system participated in less than 4 times in the batch.
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3.2 Task2b

3.2.1 PhaseA

Table 3.5 presents the statistics of the training and test data provided to the participants. The evaluation
included five test batches. For the phase A of Task 2b the systems were allowed to submit responses to any
of the corresponding types of annotations, that is documents, concepts, snippets and RDF triples. For each of
the categories we rank the systems according to the Mean Average Precision (MAP) measure (Balikas et al.,
2013). The detailed results for Task 2b phase A can be found in http://bioasq.lip6.fr/results/2b/
phaseA/.

Batch  Size # of documents # of snippets # of concepts # of triples

training 310 14.28 18.70 7.11 9.00
1 100 7.89 9.64 6.50 24.48
2 100 11.69 14.71 4.24 204.85
3 100 8.66 10.80 5.09 354.44
4 100 12.25 14.58 5.18 58.70
5 100 11.07 13.18 5.07 271.68
total 810 11.83 14.92 5.93 116.30°

Table 3.5: Statistics on the training and test datasets of Task 2b. All the numbers for the documents, snippets,
concepts and triples refer to averages.

As only partial results are available (the golden data are revised by the experts considering the answers
of the systems) in the following we present results of specific categories like concepts and documents.

Focusing on the specific categories, (e.g., concepts or documents) for the Wishart system we observe that
it achieves a balanced behaviour with respect to the baselines (Table 3.7 and Table 3.6). This is evident from
the value of F-measure which is much higher that the values of the two baselines. This can be explained on
the fact that the Wishart-S1 system responded with short lists while the baselines return always long lists (50
and 100 items respectively). Similar observations hold also for the other four batches, the results of which
are available online.

System Mean Mean Mean MAP GMAP
Precision Recall F-measure
SNUMedinfol 0.0457 0.5958 0.0826 0.2612 0.0520
SNUMedinfo3 0.0457 0.5947 0.0826 0.2587 0.0501
SNUMedinfo2 0.0451 0.5862 0.0815 0.2547 0.0461
SNUMedinfo4 0.0457 0.5941 0.0826 0.2493 0.0468
SNUMedinfo5 0.0459 0.5947 0.0829 0.2410 0.0449
Top 100 Baseline 0.2274 0.4342 0.2280 0.1911 0.0070
Top 50 Baseline 0.2290 0.3998 0.2296 0.1888 0.0059
main system 0.0413 0.2625 0.0678 0.1168 0.0015
Biomedical Text Ming 0.2279 0.2068 0.1665 0.1101 0.0014
Wishart-S2 0.1040 0.1210 0.0793 0.0591 0.0002
Wishart-S1 0.1121 0.1077 0.0806 0.0535 0.0002
UMass-irSDM 0.0185 0.0499 0.0250 0.0256 0.0001
Doc-Figdoc-UMLS 0.0185 0.0499 0.0250 0.0054 0.0001
All-Figdoc-UMLS 0.0185 0.0499 0.0250 0.0047 0.0001
All-Figdoc 0.0175 0.0474 0.0236 0.0043 0.0001

Table 3.6: Results for batch 1 for documents in phase A of Task2b.
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System Mean Mean Mean MAP GMAP
Precision Recall F-measure
Wishart-S1 0.4759 0.5421 0.4495 0.6752 0.1863
Wishart-S2 0.4759 0.5421 0.4495 0.6752 0.1863
Top 100 Baseline 0.0523 0.8728 0.0932 0.5434 0.3657
Top 50 Baseline 0.0873 0.8269 0.1481 0.5389 0.3308
main system 0.4062 0.5593 0.4018 0.4006 0.1132
Biomedical Text Ming 0.1250 0.0929 0.0950 0.0368 0.0002

3.2.2 PhaseB

Table 3.7: Results for batch 1 for concepts in phase A of Task2b.

In the phase B of Task 2b the systems were asked to report exact and ideal answers. The systems were ranked
according to the manual evaluation of ideal answers by the BioASQ experts (Balikas et al., 2013). For reasons
of completeness we report also the results of the systems for the exact answers.

Table 3.8 shows the results for the exact answers for the first batch of task 2a. In case that systems
didn’t provide exact answers for a particular kind of questions we used the symbol “-”. The results of the
other batches are available at http://bioasq.lip6.fr/results/2b/phaseB/. From those results we
can see that the systems are achieving a very high (> 90% accuracy) performance in the yes/no questions.
The performance in factoid and list questions is not as good indicating that there is room for improvements.
Again, the system of Wishart (Wishart-S3) for example shows consistent performance as it manages to answer
relatively well in all kinds of questions.

System Yes/no Factoid List
Accuracy Strict Acc. Lenient Acc. MRR Precision Recall F-measure

Biomedical Text Ming 0.9375 0.1852 0.1852 0.1852 0.0618 0.0929 0.0723
system 2 0.9375 0.0370 0.1481 0.0926 - - -
system 3 0.9375 0.0370 0.1481 0.0926 - - -
Wishart-S3 0.8438 0.4074 0.4444 0.4259 0.4836 0.3619 0.3796
Wishart-S2 0.8438 0.4074 0.4444 0.4259 0.5156 0.3619 0.3912
main system 0.5938 0.0370 0.1481 0.0926 - - -
BioASQ_Baseline 0.5313 - - - 0.0351 0.0844 0.0454
BioASQ Baseline 2 0.5000 - - - 0.0351 0.0844 0.0454

Table 3.8: Results for batch 1 for exact answers in phase B of Task2b.

Table 3.9 presents the results in terms of the Rouge evaluation measures for ideal answers for the first
batch of phase B for the Task 2B. According to the results, the systems were able to provide comprehensible
answers, and in some cases like in the second batch, highly readable ones. Table 3.10 presents such an
example for two questions for the SNUMedInfol.
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System

Rouge-2 Rouge-SU4

SNUMedinfol
SNUMedinfo2
Biomedical Text Ming
SNUMedinfo4
Wishart-S3
Wishart-S2
SNUMedinfo3
SNUMedinfo5
system 2

system 3

main system
BioASQ_Baseline 2
BioASQ_Baseline

0.1529 0.1451
0.1497 0.1402
0.1460 0.1476
0.1368 0.1286
0.1215 0.1132
0.1215 0.1132
0.1200 0.1097
0.1122 0.1035
0.0967 0.0884
0.0966 0.0883
0.0965 0.0883
0.0458 0.0466
0.0449 0.0441

Table 3.9: Results for batch 1 for ideal answers in phase B of Task2b.

SNUMedInfol

‘ Golden answer

Overexpression of sirtuins (NAD(+)-dependent protein deacetylases)
has been reported to increase lifespan in budding yeast (Saccha-
romyces cerevisiae)

Overexpression of sirtuins (NAD(+)-dependent protein deacetylases)
has been reported to increase lifespan in budding yeast (Saccha-
romyces cerevisiae).

Catecholaminergic polymorphic ventricular tachycardia (CPVT)
is a rare arrythmogenic disease characterized by exercise—or
stress—induced ventricular tachyarrythmias, syncope, or sudden
death, usually in the pediatric age group. Familial occurrence has
been noted in about 30% of cases. Inheritance may be autosomal
dominant or recessive, usually with high penetrance. The causative
genes have been mapped to chromosome 1. Mutations of the
cardiac ryanodine rece ptor gene (RyR2) have been identified in
autosomal dominant pedigrees, while calsequestrin gene (CASQ2)
mutations are seen in recessive cases. Several mutations in the
genes encoding RyR1 and RyR2 have been identified in autosomal
dominant diseases of skeletal and cardiac muscle, such as malignant
hyperthermia (MH), central core disease (CCD), catecholaminergic
polymorphic ventricular tachycardia (CPVT), and arrhythmogenic
right ventricular dysplasia type 2 (ARVD2).

Autosomal dominant catecholaminergic polymorphic ventricular
tachycardia (CPVT) was mapped to chromosome 1q42-43 with iden-
tificatio n of pathogenic mutations in RYR2.

Table 3.10: The ideal answers returned for two questions from the system SNUMedInfo along with the golden

ones.
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Prizes

Tables 4.1 presents the prizes that were awarded to the winners for Task 2A.

1st place prize (euros) ‘ 2nd place prize (euros)
Batch 1 MiF Auth 650 NCBI 350
LCA-F NCBI 650 Auth 350
Batch 2 MiF Fudan 650 NCBI 350
LCA-F  Fudan & NCBI 500 & 500 - -
Batch 3 MiF Fudan 650 NCBI 350
LCA-F Fudan 650 NCBI 350

Table 4.1: Prizes awarded for Task 2A.

The members of each team for task 2a were the following:

e Auth: Yannis Papanikolaou, Grigorios Tsoumakas, Manos Laliotis, Nikos Markantonatos, loannis Vla-

havas

¢ NCBI: Yuging Mao Chih-Hsuan Wei, Zhiyong Lu

e Fudan: Ke Liu, Jungiu Wu, Shengwen Peng, Chengxiang Zhai, Shanfeng Zhu

Tables 4.2 and 4.3 present the prizes that were awarded to the winners for Task 2B.
The members of each team for task 2b were the following:

e Auth: Dimitrios Dimitriadis, Grigorios Tsoumakas, Manos Laliotis, Nikos Markantonatos, loannis Vla-

havas

¢ NCBI: Yuging Mao Chih-Hsuan Wei, Zhiyong Lu

e TTI: Kota Makise, Yutaka Sasaki

Bio
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1st place prize (euros) ‘ 2nd place prize (euros)
Documents SNU 200 TTI 100
Batch 1
Concepts ALBERTA 200 TTI 100
Documents SNU 200 Fudan 100
Batch 2
Concepts ALBERTA 200 TTI 100
Documents SNU 200 Fudan 100
Batch 3
Concepts ALBERTA 200 Fudan 100
Documents SNU 200 NCBI 100
Batch 4
Concepts ALBERTA 200 NCBI 100
Documents SNU 200 NCBI 100
Batch 5
Concepts ALBERTA 200 NCBI 100
Table 4.2: Prizes awarded for Task 2B -Phase A
1st place prize (euros) ‘ 2nd place prize (euros)
Exact answer ALBERTA 200 NCBI 100
Batch 1
Ideal answer SNU 200 NCBI 100
Exact answer ALBERTA 200 NCBI 100
Batch 2
Ideal answer NCBI 200 SNU 100
Exact answer ALBERTA 200 NCBI 100
Batch 3
Ideal answer SNU 200 NCBI 100
Exact answer ALBERTA 200 AUTH 100
Batch 4
Ideal answer SNU 200 NCBI 100
Exact answer NCBI 200 AUTH 100
Batch 5
Ideal answer NCBI 200 SNU 100

¢ SNU: Sungbin Choi, Jinwook Choi

Table 4.3: Prizes awarded for Task 2B -Phase B

e ALBERTA: Yifeng Liu

¢ Fudan: Beichen Wang, Shanfeng Zhu
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Conclusions and Potential Impact

5.1 Task2a

In the first task of BIOASQ a large number of teams participated submitting a large number of systems. The
majority of the systems were able to successfully cope with both the large scale of the problem as well as the
on-line evaluation procedure. From the results, we can draw three main conclusions:

¢ The majority of the systems were able to achieve good performance being able to outperform the weak
baseline throughout the batches. Interestingly, the average performance of the systems has greatly
improved indicating that more high performance systems have participated in the competition.

¢ The best systems were able to outperform the strong baseline (MTI), thus pushing the state-of-the-
art. More specifically, the systems achieved to enlarge the performance gap with the MTI baseline
with respect to last year’s results. We regard this as a very important achievement towards the goal
of developing accurate classification systems for large-scale problems.

e A variety of methods have been used by the participants like pure machine learning approaches,
search-based approaches and learning-to-rank approaches. The different technologies that were used
allowed us to asses them on a very large-scale scenario. More specifically, the learning-to-rank ap-
proaches followed in (Liu et al., 2014; Yuqging Mao, 2014) showed that such systems can be effective
for large-scale classification tasks. Also, even the hierarchical approach employed by Ribadas-Pena
et al. (2014) achieved moderate results the low complexity of such approaches make them appealing
for large-scale scenarios.

5.2 Task2b

In the second task the participation has increased with respect to the first edition of the BIOASQ challenge.
In phase A the participating systems were able in most cases to outperform the baselines and they were to
achieve good results indicating a participation of high quality systems.

Concerning phase B of the task, the participating systems were also able to obtain better performance
than that of the baselines and provide comprehensible ideal answers.
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5.3 Potential Impact of New Technologies

Firstly, we would like to point out the fact that this year’s baseline system of MTl incorporated features from
the best performed system in the first edition of BIOASQ competition (Tsoumakas et al., 2013; James G. Mork,
2014; Partalas et al., 2013). This resulted to an increase in the performance of the MTI system reflecting the
impact of the technologies presented in the BIOASQ challenges in the state-of-art systems.

The top rated systems which were able to improve substantially over the MTI baseline follow different
approaches. The first ranked systems followed a hybrid approach mixing an information retrieval phase and a
learning-to-rank procedure (Liu et al., 2014; Yuging Mao, 2014). The second best rated systems presented in
(Papanikolaou et al., 2014) followed a pure machine learning approach employing flat classification schemes
using SVMs and combining several systems with ensemble methods. Also the hierarchical approaches that
presented in the competition achieved good results having low complexity due to the use of the hierarchical
structure. While the former approaches are able to provide better results the latter enjoy faster training and
inference times (very crucial for on-line search engines like GoPubMed). So, potentially both technologies
could be used in order to boost the prediction capabilities of a search engine where the first can be employed
in an off-line scenario for improving the annotations of the articles in the database.

The technologies of the learning-to-rank systems can be integrated in the front-end of the search engine
in order to provide accurate and fast results to the users. In addition, the approaches developed and submit-
ted in the framework of Task 1b, may be used as a basis to develop Q&A expansions of GoPubMed. Based
on this observation, GoPubMed could be among the first search engines to launch a fully fledged Q&A for
the biomedical domain in the search engine market. More details on the potential impact of the proposed
approaches in BIOASQ challenges will be presented in the corresponding deliverable.
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