
Intelligent Information Management
Targeted Competition Framework
ICT-2011.4.4(d)

Project FP7-318652 / BioASQ
Deliverable D3.3
Distribution Public

http://www.bioasq.org

Annotation Tool

Axel-Cyrille Ngonga Ngomo, Norman Heino, René
Speck, Timofey Ermilov, George Tsatsaronis

Status: Final (Version 1.0)

February 2013

page i

Project
Project ref.no. FP7-318652
Project acronym BioASQ
Project full title A challenge on large-scale biomedical semantic indexing and

question answering
Porject site http://www.bioasq.org
Project start October 2012
Project duration 2 years
EC Project Officer Martina Eydner

Deliverable
Deliverabe type Report
Distribution level Public
Deliverable Number D3.3
Deliverable title Annotation Tool
Contractual date of delivery M4 (January 2013)
Actual date of delivery February 2013
Relevant Task(s) WP3/Task 3.3
Partner Responsible ULEI
Other contributors TI
Number of pages 13
Author(s) Axel-Cyrille Ngonga Ngomo, Norman Heino, René Speck,

Timofey Ermilov, George Tsatsaronis
Internal Reviewers Sergios Petridis, Makis Malakasiotis
Status & version Final
Keywords Annotation tool, WP3, RDF verbalization, Semantic search

D3.3: Annotation Tool

page ii

Contents

1 Introduction 1

2 Related Work 2

3 Annotation Tool 4
3.1 Overview . 4
3.2 Functionality . 5

3.2.1 Authentication . 5
3.2.2 Search . 6
3.2.3 Data Selection . 6
3.2.4 Annotation . 6
3.2.5 Storage . 7

3.3 Search Modules . 9
3.4 Verbalization Service . 10

D3.3: Annotation Tool

page iii

List of Figures

3.1 Architectural overview of the developed annotation tool. 4
3.2 Screenshot of the annotation tool’s registration screen. 5
3.3 Screenshot of the annotation tool’s login screen. 6
3.4 Screenshot of the annotation tool’s search and data selection screen with the section for

document results expanded. 7
3.5 Screenshot of the annotation tool’s answer annotation process 8
3.6 Entity-relationship diagram of the data schema used to store questions, answers and

annotations. 8

D3.3: Annotation Tool

page iv

List of Tables

2.1 Evaluation of existing tools. T1 = Gate, T2 = Stanford Manual Annotation Tool, T3 =
AKTiveMedia, T4 = WordFreak, T5 = OntoMat, T6 = Coat, T7 = Vogon, T8 = MMAX2,
T9 = UIMA Corpus Tool. + stands for “requirement fulfilled”, O for requirement partly
fulfilled and − for requirement not fulfilled. 3

3.1 Accuracy of realization of atomic graph patterns. Namespace stands for the namespace
of the properties used in a SPARQL query. Frequency denotes the number of times that
a property from a given namespace was used, for example property (which stands for
http://dbpedia.org/property) or ontology (http://dbpedia.org/ontology).
#Verbs (resp. #Nouns) is the number of properties that were classified as verbs (resp.
nouns). 12

D3.3: Annotation Tool

page 1 of 13

1

Introduction

The annotation tool was created with the aim of supporting the creation of the benchmark data for the
challenge Tasks 1b and 2b. As specified in the Description of Work presented to the unit, this tool was
thus specifically designed to enable the biomedical experts to create the gold standards for these tasks.
In its current version 1, the tool enables its users to:

• create evaluation questions or continue working on existing questions,

• search for relevant concepts, documents and triples that allow answering the questions,

• associate the evaluation questions with gold standard answers.

• annotate them with concepts from designated taxonomies or ontologies, and

• associate the answers with relevant triples and snippets from selected data sources.

The BioASQ annotation tool is based on existing semantic search technologies developed by TI and
an RDF verbalization framework developed by ULEI. Moreover, it relies on the datasets presented in
deliverable D3.2. After a brief comparison of our annotation with some state-of-the-art annotation tools,
we give an overview of the tool itself. We focus especially on presenting its architecture and the services
upon which it relies. The tool is available at http://at.bioasq.org. The sources for the tool
presented herein as described by Heino et al. (2013). The SPARQL2NL framework is documented
by ?Ngonga Ngomo et al. (2013).

D3.3: Annotation Tool

http://at.bioasq.org

page 2 of 13

2

Related Work

Several tools have already been created with the goal of enabling the annotation of data. We evaluated a
number of these tools with respect to the requirements based on the specific goals of the tool presented
in the introduction. Especially, we required the tools to:

• be open-source to ensure that they could be extended with the required functionality at will,

• be Web-based due to the distribution of the annotators, i.e., our bio-medical experts,

• support the export of the annotations as RDF, as such an export is the basis for the later integration
with the social network

• support the manual creation of new items to annotate as required for the creation of questions for
the BioASQ tasks,

• allow the annotation with concepts, RDF triples and snippets as required for the creation of gold
answers for the BioASQ tasks

• support the integration of JSON search services as required for the search through the data corpus
from which the answers are to be retrieved by the competitors.

The results of our evaluation of the tools and frameworks Gate1, Stanford Manual Annotation Tool2,
AKTive Media3, WordFreak4, Vogon5, MMAX26 and UAM Corpus Tool 7 are shown in Table 2.1. Our
evaluation showed that none of the existing tools was fit to be used for our purposes. Especially, most of
them lacked RDF support. Moreover, the concept behind the annotation tool needed for BioASQ differs
from the classical approach to annotation: Most of the tools supported the annotation of a predefined

1http://gate.ac.uk/
2http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.

gz
3http://eprints.aktors.org/537/01/poster-camera.pdf
4http://wordfreak.sourceforge.net/
5http://sourceforge.net/projects/gobtan/
6http://mmax2.sourceforge.net/mmaxpaper.pdf
7http://www.wagsoft.com/CorpusTool/

D3.3: Annotation Tool

http://gate.ac.uk/
http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://eprints.aktors.org/537/01/poster-camera.pdf
http://wordfreak.sourceforge.net/
http://sourceforge.net/projects/gobtan/
http://mmax2.sourceforge.net/mmaxpaper.pdf
http://www.wagsoft.com/CorpusTool/

page 3 of 13

T1 T2 T3 T4 T5 T6 T7 T8 T9

Open Source + + + + O + + + −
Web-Based − − − − O − + − −
RDF export + − − − + − + − −
Manual creation of corpus O O O O O O O O O
Annotation with concepts + + + + + + + + +
Annotation with snippets + − + − − − − − −
Annotation with triples − − − − − − − − −
Search O − O − − − − O O

Table 2.1: Evaluation of existing tools. T1 = Gate, T2 = Stanford Manual Annotation Tool, T3 = AK-
TiveMedia, T4 = WordFreak, T5 = OntoMat, T6 = Coat, T7 = Vogon, T8 = MMAX2, T9 = UIMA
Corpus Tool. + stands for “requirement fulfilled”, O for requirement partly fulfilled and − for require-
ment not fulfilled.

corpus. Thus, they do not provide interfaces for the creation of the corpus at runtime. Rather, they allow
to load an existing corpus (that is to be annotated) prior to the annotation process itself. Yet, in the case
of BioASQ, our goal is to create a corpus of questions to annotate and to annotate the questions with
snippets, documents, triples and concepts concurrently. We thus decided to implement the annotation
tool by relying on existing JavaScript libraries.

D3.3: Annotation Tool

page 4 of 13

3

Annotation Tool

In this section, we present the BioASQ annotation tool in more detail. We begin by giving an overview of
its architecture. Then, we present the functionality of the tool by presenting each step of the annotation
process. Finally, we give some insights in the services that the tool uses in the background.

3.1 Overview

The developed tool consists of four main components as depicted in Figure 3.1.

Backend
service

Question
storage

Frontend GoPubMed

Verbalizer
Service

Figure 3.1: Architectural overview of the developed annotation tool.

The main annotation workflow is driven by the frontend component that resides in the user’s browser.
It consists of HTML pages along with some client-side scripts. Functionality that requires persistent
storage (authentication) or interfacing with remote hosts (e.g., search) is supported by the backend ser-

D3.3: Annotation Tool

3.2. Functionality page 5 of 13

vices. These are implemented as lightweight Node1 services relying entirely on the REST paradigm
with JSON being the only message format. All persistent storage is achieved using MongoDB2, a high-
performance NoSQL database. The JSON (or more precisely BSON) documents stored in MongoDB
resemble RDF/JSON documents in the developed vocabulary, thus alleviating RDF export. All search
requests are sent to individual GoPubMed services. The results are aggregated and, in the case of RDF
statements, verbalized as described in section 3.4.

3.2 Functionality

The BioASQ annotation tool was implemented so as to be aligned with the annotation guidelines that
were decided upon with the biomedical expert annotators. Accordingly, it supports the following five
basic steps: authenticate, search, select, annotate and store. In the following, we present each of these
steps.

3.2.1 Authentication
The basic requirement behind the authentication process was to allow only the experts from the bio-
medical expert team to create the benchmark. Thus, the backend of the annotation tool manages a
whitelist containing emails of users who are allowed to use the tool. The whitelist was conceived to
be easily extensible by the means of simple JavaScript commands 3 A user that aims to register has to
provide the tool with a name, email and password through the frontend (see Figure 3.2). If he/she is in
the whitelist, then he/she receives a welcome email with an activation link. Once this link was used in a
browser, the account is activated and the browser redirects the user to the login page. The login is then
carried out by using his email and password (see Figure 3.3).

Figure 3.2: Screenshot of the annotation tool’s registration screen.

1http://nodejs.org
2http://www.mongodb.org
3See https://github.com/AKSW/BioASQ-AT for all details.

D3.3: Annotation Tool

http://nodejs.org
http://www.mongodb.org
https://github.com/AKSW/BioASQ-AT

3.2. Functionality page 6 of 13

Figure 3.3: Screenshot of the annotation tool’s login screen.

3.2.2 Search
The search interface as seen in Figure 3.4 accepts a number of keywords that are sent in parallel to each
of the the GoPubMed services. Upon retrieval of the last response results are combined and returned
to the frontend. Since the search APIs differ slightly (i.e. document search suports pagination while
concept search does not) the client creates one request for each of the result domains (concepts, docu-
ments, statements). Whenever results retrieved for a domain the respective section of the GUI is updated
immediately. Each search results displays the title of the result. More information can be obtained by
clicking on “More Info”.

The search interface for triples returns RDF from the selected data sources. Given that most bio-
medical experts are not familiar with Semantic Web technologies, we opted for presenting a verbalized
version of the triples as title. The triples themselves are presented when more information is requested
by the user. The verbalization of the triples was realized by extending the SPARQL2NL framework and
is presented in Section 3.4.

3.2.3 Data Selection
Data selection is performed directly from the search results screen. The user interface as depicted in
Figure 3.4 for each search result exhibits two buttons:

• a document icon that can be used to view the original resource (i.e. document URL),

• a plus sign that, when clicked, adds the respective resource to a list of resources marked to be used
during annotation.

Each of the selected resources is made available as annotation in the next step.

3.2.4 Annotation
The annotation process itself is split into three substeps:

1. Formulating the answer.

2. Annotating the answer with selected documents or parts of them.

3. Storing the complete answer on server.

D3.3: Annotation Tool

3.2. Functionality page 7 of 13

Figure 3.4: Screenshot of the annotation tool’s search and data selection screen with the section for
document results expanded.

The first step is the formulation of the answer to selected question by the domain expert. After
the careful formulation of the answer, the said answer can be annotated with the documents, snippets,
concepts and triples that were selected at the search stage. The annotation is carried out as depicted in
Figure 3.5. For the first version of the challenge, we assume that all documents, concepts and triples
selected by the user during the search phase are used to annotate the whole answer. The core of the
annotation process here is thus either to dismiss items that were selected in the previous step or to add
snippets (i.e., document fragments) as annotations to the answer. The deletion of items can be carried
out by simply clicking on the − icon next to the items that are to be deleted. The addition of snippet is
similarly simple: The user simply has to select the document from which he/she wishes to use snippets
for annotation. Then, he/she selects the fragment from the document and clicks on “Annotate with
selected snippet”. Selected snippets can be deleted at any time by simply clicking on the × icon at their
bottom right end. The annotation is considered completed when the user clicks on the “Save” button at
the upper right of the annotation window. This action stores all annotations in the database on the server
side. Obviously, saving can be carried out as often as needed. Moreover, all annotations carried out by
the user are also stored locally in the browser cache. Note that the user can go back to the search or
question formulation tab at any time. Therewith, the tool ensures maximal annotation flexiblity.

3.2.5 Storage
The data storage implemented by our tool relies on the NoSQL database MongoDB. We chose this
framework because it supports a very flexible data model resembling RDF and has an open-source nature
and high scalability. The data is stored internally according to the schema presented in Figure 3.6.

The core entities stored by the tool are questions, answers and annotations. We assume that each
question has exactly one answer and that each answer is annotated by snippets, documents, concepts
or triples. Each question is created by one user (the creator) and is associated to a type, which states

D3.3: Annotation Tool

3.2. Functionality page 8 of 13

Figure 3.5: Screenshot of the annotation tool’s answer annotation process

Question Answer

_id

body

creator

type

Annotation
1 1 1 n

body

type

body

answer
Begin

answer
End

annotation
Begin

annotation
End

annotation
Source

links to
concept (URI),
document
(PMID) or
statement
(direct)

Figure 3.6: Entity-relationship diagram of the data schema used to store questions, answers and annota-
tions.

D3.3: Annotation Tool

3.3. Search Modules page 9 of 13

the awaited type of answers. Currently, the tool supports 4 main types of questions: Yes/No, factoid,
list, and summary. All answers have a body (which is basically text), of which each fragment can be
annotated.

3.3 Search Modules

For the purposes of BioASQ tasks 1a and 2a, we have indexed the PubMed data, e.g., approximately
23 million entries with titles and abstracts of the papers, as well as the MeSH ontology, from which the
class labels (MeSH headings) are drawn. Regarding tasks 1b and 2b, in addition to the aforementioned,
we have indexed:

• the Jochem ontology, for the purpose of covering drugs

• the UniProt database (the Swiss-Prot component), for the purpose of covering targets

• the Gene Ontology, also for the purpose of covering targets

• the Disease Ontology, for the purpose of covering diseases

• the LinkedLifeData triples, for the purpose of covering the needs of tasks 1b and 2b regarding ex-
tracted facts (approximately 8 billion statements, which also include all of the statements extracted
from UMLS)

• approximately 800, 000 full text articles from PubMed Central, for the purpose of expanding the
PubMed document source with searchable full text articles. The articles are offered through a
particular agreement with TI.

All of the aforementioned resources have been indexed by TI and are provided through respective
Web services. The ontological resources have been converted to proper OBO files, i.e., files formatted
following the OBO Foundry Flat File Format Specification for ontologies4. The concept names (labels),
their synonyms and their relations have been indexed in separate Lucene indexes. For the document
resources, also Lucene indexes are used, applying the standard Lucene analyzer for the English language.

The API through which the resources may be accessed, is based on JSON. For each resource, a
respective service is implemented in a unique URL. Each URL request opens a session and may request
the results, given a query, e.g., a concept, using HTTP-POST and a parameter json. The reply (the value
of the json parameter) is a JSON object that contains the results for the given query. In the case of the
ontological resources, the result list contains concepts from the respective ontology, and in the case of
the document sources, the result list contains citations from Medline (title, and abstract), or full text
articles from PubMed Central.

A list of the services that have been developed follows, with a short description of the input and
output parameters used for accessing the resources and getting results.

• In the URL: http://www.gopubmed.org/web/bioasq/mesh/json, a service for ac-
cessing the MeSH ontology, with input parameter “findEntity”, and output parameter “findings”,
which contains the list of related concepts (a list of “concept” entries with “label” entries), given
the query submitted with the input parameter. Additional information is provided inside each
“label” entry in the JSON object, such as “termId” and “uri” of the concept. In addition, inside
each “concept” entry, the offsets in which the query keywords matched each returned concept are
provided.

4http://www.obofoundry.org/

D3.3: Annotation Tool

http://www.gopubmed.org/web/bioasq/mesh/json
http://www.obofoundry.org/

3.4. Verbalization Service page 10 of 13

• In the URL: http://www.gopubmed.org/web/bioasq/go/json, a service for access-
ing the GO ontology, with the same input and output parameters as aforementioned.

• In the URL: http://www.gopubmed.org/web/bioasq/uniprot/json, a service for
accessing the UniProt database, with the same input and output parameters as aforementioned.

• In the URL: http://www.gopubmed.org/web/bioasq/jochem/json, a service for
accessing the Jochem ontology, with the same input and output parameters as aforementioned.

• In the URL: http://www.gopubmed.org/web/bioasq/doid/json, a service for ac-
cessing the Disease Ontology, with the same input and output parameters as aforementioned.

• In the URL: http://www.gopubmed.org/web/bioasq/pubmed, a service for accessing
the PubMed indexed documents (titles and abstracts), with the same input parameters as afore-
mentioned, and the output parameter containing “documents” entries in the returned JSON object.
Each entry has a “pmid” element, which is the PubMed id of the indexed citation, a “documentAb-
stract” entry, and a “title” entry. In addition, the MeSH annotations are provided when available.

• In the URL: http://www.gopubmed.org/web/bioasq/pmc/json, a service for ac-
cessing the PMC full text articles, with the same input parameters and output parameters as afore-
mentioned, with the only difference being that the articles returned contain in addition the full
text.

• In the URL: http://www.gopubmed.org/web/bioasq/linkedlifedata/triples,
a service for accessing the LinkedLifeData platform triples. The input parameter is “findTriples”,
and accepts any keywords as query. The output parameter contains a list of “triples” entries. Each
entry has in turn a “subj”, “pred”, “obj” and “score” field, representing the subject, the predicate
and the object of the triple, and the matching score given the input query.

3.4 Verbalization Service

The verbalization service was implemented by extending the SPARQL2NL framework developed by
ULEI.5 The approach followed by SPARQL2NL is tailored towards SPARQL constructs typically used
in keyword search and question answering, and it consists of four main steps: a preprocessing step which
normalizes the query and extracts type information for the occurring variables, a processing step during
which a generic representation of the query is generated, a postprocessing step which applies reduction
and replacement rules in order to improve the legibility of the verbalization, and a realization step which
generates the final natural language representation of the query. As an exemplary use case, SPARQL2NL
has been integrated into a user interface for the question answering system TBSL to enable users to read
and disambiguate the different SPARQL queries generated when processing a question.6

The rationale behind the service is that RDF triples can be regarded as variable-free atomic graph
patterns. Thus, the SPARQL2NL approach can be used to verbalize RDF triples. The realization of an
RDF triple s p o depends mostly on the verbalization of the predicate p. If p can be realized as a noun
phrase, then a possessive clause can be used to express the semantics of s p o, as shown in 1. For
example, if p is a relational noun like classis, then the verbalization is ?x’s classis is ?y.
In case p’s realization is a verb, then the triple can be verbalized as given in 2. For example, if p is the
verbal expression is part of, then the verbalization is ?x is part of ?y.

5http://aksw.org/Projects/SPARQL2NL.html
6A demo can be found at http://autosparql-tbsl.dl-learner.org.

D3.3: Annotation Tool

http://www.gopubmed.org/web/bioasq/go/json
http://www.gopubmed.org/web/bioasq/uniprot/json
http://www.gopubmed.org/web/bioasq/jochem/json
http://www.gopubmed.org/web/bioasq/doid/json
http://www.gopubmed.org/web/bioasq/pubmed
http://www.gopubmed.org/web/bioasq/pmc/json
http://www.gopubmed.org/web/bioasq/linkedlifedata/triples
http://aksw.org/Projects/SPARQL2NL.html
http://autosparql-tbsl.dl-learner.org

3.4. Verbalization Service page 11 of 13

1. ρ(s p o) ⇒ poss(ρ(p),ρ(s))∧subj(BE,ρ(p))∧dobj(BE,ρ(o))

2. ρ(s p o) ⇒ subj(ρ(p),ρ(s))∧dobj(ρ(p),ρ(o))

Note that BE stands for the verb “to be” and ρ is the realization function. In order to automatically
determine which realization to use, we relied on the insight that the first and last word of a property
label are often the key to determining the type of the property: properties whose label begins with a
verb (resp. noun or gerund) are most to be realized as verbs (resp. nouns). We devised a set of rules to
capture this behavior:

• Property labels which begin by a past tense hint toward verbal clauses.7

• Property labels which begin by a gerund and end in a noun hint toward possessive clauses.

• Property labels which begin with a noun are usually noun phrases.

• Property labels which begin with a verb are usually verbs.

In some cases none of the rules apply. In these cases, we compare the probability of P (p|noun) and
P (p|verb) by measuring

P (p|X) =

∑
t∈synset(p|X)

log2(f(t))∑
t′∈synset(p)

log2(f(t
′))

, (3.1)

where synset(p) is the set of all Wordnet synsets of p, synset(p|X) is the set of all synsets of p that
are of the syntactic class X ∈ {noun,verb} and f(t) is the frequency of use of p in the sense of the
synset t according to WordNet. For

P (p|noun) ≥ θ × P (p|verb), (3.2)

we choose to realize p as a noun; else we realized it as a verb. We evaluated the approach on the
QALD-2 question answering benchmark as shown in Table 3.1. The verbalization service 8 requires
three variables (strings):

• the label of the subject (subject),

• the label of the predicate (predicate),

• the label of the object (object).

The exemplary call http://139.18.2.164:9998/verbalizer?subject=Manioc&
predicate=contain&object=cyanide returns {"Manioc contains cyanide."}.

7Note that such word forms can be easily detected in English, while infinitive and third person forms are often identical
with noun forms.

8Accessible at http://139.18.2.164/verbalizer/.

D3.3: Annotation Tool

http://139.18.2.164/verbalizer/

3.4. Verbalization Service page 12 of 13

Dataset Namespace Frequency #Verbs #Nouns
Accuracy in %

θ = 1 θ = 2 Baseline

DBpedia-test property 40 8 25 87.50 90.00 75.00
ontology 97 7 48 91.75 94.85 86.60
Other 99 2 1 98.99 98.99 32.32
Overall 236 17 74 94.07 95.76 61.86

DBpedia-train property 41 1 26 100.00 100.00 80.25
ontology 81 5 43 95.06 100.00 85.37
Other 135 3 2 98.51 98.51 42.96
Overall 257 9 71 97.67 99.22 61.48

Table 3.1: Accuracy of realization of atomic graph patterns. Namespace stands for the names-
pace of the properties used in a SPARQL query. Frequency denotes the number of times
that a property from a given namespace was used, for example property (which stands
for http://dbpedia.org/property) or ontology (http://dbpedia.org/ontology).
#Verbs (resp. #Nouns) is the number of properties that were classified as verbs (resp. nouns).

D3.3: Annotation Tool

Bibliography page 13 of 13

Bibliography

N. Heino, R. Speck, T. Ermilov, and A.-C. Ngonga Ngomo. BioAsq Annotation Tool GIT, January
2013. URL https://github.com/AKSW/BioASQ-AT.

A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber. SPARQL2NL GIT, January
2013. URL https://github.com/AKSW/SPARQL2NL.

D3.3: Annotation Tool

https://github.com/AKSW/BioASQ-AT
https://github.com/AKSW/SPARQL2NL

	Introduction
	Related Work
	Annotation Tool
	Overview
	Functionality
	Authentication
	Search
	Data Selection
	Annotation
	Storage

	Search Modules
	Verbalization Service

